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Some general examples of non-interpolation pairs and spaces are presented.
Necessary conditions for interpolation are established which determine the first type
of examples. Constructions connected with the relative completion and a property
of the K-functional provide the second class of examples. These techniques provide
new information about non-interpolation of symmetric spaces. © '989 Academic

Press, Inc.

1. INTRODUCTION

We recall some notation from interpolation theory (cf. [2, 9J).
A pair A = (A 0' A I) of Banach spaces is called a Banach couple if A 0 and

A I are both continuously imbedded in some Hausdorff topological vector
space V.

For a Banach couple .1= (A o, Ad we can form the intersection
LI(.1) = A o (\ A I and the sum L (A) = A o+ A ,. They are both Banach
spaces in the natural norms

and

where, for t > 0,

J(t, a) =J(t, a; A o, AI) = max(11 a IIAo' t II a liAr)'

and

a=ao+a" aoEAo, a, EAd.
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A Banach space A is called an intermediate space between A o and Al (or
with respect to A) if A on Al cAe A o+ Al with continuous inclusions. For
brevity, the closure of A on A 1 in A will be denoted by AO.

Let A = (A o, Ad and B= (Bo, Bd be two Banach couples. We denote by
L(A, B) the Banach space of all linear operators T: A o+ Al --+ Bo+ B 1 such
that the restriction of T to the space Ai is a bounded operator from Ai into
B i , i = 0, 1, with the norm

We say that two intermediate spaces A and B are called interpolation
spaces with respect to A and B and we will write (A, B) E Int(A, B) if every
linear operator from L(A, B) maps A into B. It is a consequence of the
closed graph theorem that then the restriction of T to A is the bounded
operator from A into Band

(1)

for some positive constant C independent of T E L(A, B). If A coincides
with B then A is called an interpolation space with respect to A and Band
we write A E Int(A, B); if, moreover, A o= Bo and Al = B 1 then A is called
an interpolation space between A o and Al (or with respect to A), and we
write A E Int A.

Let g> denote the set of all functions cp: (0, (0) --+ (0, (0) such that cp(s) ~
max(l, sit) cp(t) for all s, t > 0. We then define the space Acp,oo =
(A o, Adcp,oo as the space of all aEAo+A 1 such that

II II
- K(t, a; A o, Ad

a cp, 00 - sup ( )
t>O cp t

is finite; if cp(t)=te(0~8~1) we write, in short, Ae,oo and Ilalle,OO' We
note that Ao 00 is the space of all a E A o+ A 1 such that lim[-> 00

K(t, a; A o, Ad'< 00; it can be proved that Ao,oo is a relative completion 10
of A o with respect to A o+ AI-

The plan of the paper is as follows:
In Section 2 we discuss necessary conditions for interpolation using,

among other things, the fundamental function Jl.
In Section 3 first we study interpolation spaces A and B with respect to

A and B, where A is the sum A o+ Al (Th. 1). In Theorem 2 we give a result
on non-interpolation of A i and B1- i (i = 0, 1) with respect to A and B
based on considerations in [12] _In Theorem 3 we investigate when Ao or
Al is an interpolation space with respect to A = (A o, Ad and B= (AI' A o).
These results contain some results of Aronszajn and Gagliardo [1].

In Section 4, the above results are applied to an important class of
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symmetric spaces, in particular to Lorentz spaces. For example, Theorem 4
characterizes interpolation spaces between L 00 and E I .

Finally, in Section 5, we have collected various results giving /l for
symmetric spaces.

2. FUNDAMENTAL FUNCTIONS AND NECESSARY

CONDITIONS FOR INTERPOLAnON

For a Banach space A containing AonA I =I {O} (or for a Banach space
A contained in Ao+A I ) the fundamental function /lA(V A) is given for t>O
by

sup II aliA'
II a IIAo"; I, lIallAI";1

We note that /lA' VAE.?J', /lA(l) is the norm of imbedding AonA I into A,
and vA (l) is the norm of imbedding A into Ao+A j •

Let us investigate properties of these functions which we will need; other
properties of /lAin the case of symmetric spaces will be considered in
Section 5.

PROPOSITION 1. (a) Suppose that AocA I . If Ao is non-closed in A j then
/lAo(t) = 1 for all t> 0; if Ao is closed in A j then /lAo(t):::::: min(l, t)l.

(b) If A on A I is a non-closed subspace in both Ao and A 1 then
IlAonAJt) = max(l, t).

(c) If A on A I is dense in both Ao and A I and if A is intermediate
space between Ao and AI then vA(t, Ao, Ad = IlA.(t, At, At)·

Proof Obviously min( 1, t) IlAo( 1) ~ Il Ao(t) ~ 1 for all t > O.

(a) If Ao is non-closed in Al then there exists a sequence {an} cAo
such that II an II Ao = 1 and II an II Al --+ O. Hence

(t) ..... l' Ilanll Ao = 1IlAo 9 1m I .
n~ 00 J(t- ,an)

1 The symbol !(t) ;o;;g(t) means that there exist positive constants C\, C2 such that
cd(t) <;;g(t) <;; czf(t) for all t > O.
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If Ao is closed in A 1 then II a II Ao ~ C1 II a II AI for each a E A o and so

(b) Since IlaIIAonAj~max(1,t)J(t-\a) it follows that JiAonAJt)~

max(1, t). From the assumptions there exist sequences {a~} c Aon A 1 such
that II a~ II Ao n Aj = 1 and limn ~ 00 II a~ II Ai = 0, ; = 0, 1. Hence

JiAonAj(t) = max(JiAo(t), JiAJt))

( 1· Ila~IIAo 1· Ila~IIAj) (1)
~max 1m J( ~I 1)' 1m (-1 0) =max ,t.n~ 00 t ,an n~ 00 J t ,an

(c) If A on Al is dense in both A o and Al then (A.f, At) is a Banach
couple and if A is an intermediate space between Ao and A 1 then A *
contains A.fnAt. Moreover since K(t-\a;Ao,Ad and J(t,a*;A.f,An
are dual norms (cf. [2]), it follows that

VA(t) = sup _t_ sup Ia*(a)1
aEA IlaIIAa*EAonA;J(t,a*;A.f,An

1 la*(a)1
sup J( -1 * A* A*) sup II IIa*EAonAj t ,a; 1, 0 aEA a A

sup Ila*IIA* - (A* A*)
* J( -1 *. A* A*)-JiA* t. 1, o·

a E A; n At t ,a, 1, 0

The following propoSItIon is similar to Lemma 7. III in [1] and
Lemma 4 in [6] (for completeness sake we give a proof).

PROPOSITION 2 (Necessary Conditions). Let (A, B) E Int(A, B).

(a) If A c/:. A1o+ AI then B~Bl_i' ;=0,1.

(b) If AonA I is dense in both A o and Al then

JiB(t, Bo, B I ) JiA*(t, At, An ~ Ct

for all t ~O.

(2)

Proof (a) Let a E A, a f/; A10 + Aj, and let f be a bounded linear
functional on Ao+A I vanishing on A1o+ Aj andf(a) = 1.
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For any bEBI _ i the linear operator Tx=f(x)b belongs to £(A,.8).
Hence b= TaEB and

II b IIB= II Ta IIB~ II TIIA~B II a IIA ~ ell f IIA7_, II b IIB1_' II aliA'

This proves assertion (a).

(b) We consider the one-dimensional operator T: Ao+ A 1-;'

Bon B b Ta = a*(a) b, where a* E At n Af = (A o+ Ad* and bE Bon R I.
We have

and

II TIIA,~B,= Ilbll Bi sup la*(a)1 = IlbllBI Ila*IIA~'
II a IIA i ,;; I '

i= 0,1,

The interpolation property implies that there exists a constant C> 0 such
that

Ilbil B Ila*IIA*~Cmax{llbIIBo Ila*IIA~' jlbll Bl Ila*IIAt},

VbEBonBI,Va*EA~nAr (3)

Since

it follows from (3) by taking the supremum over all bE Bon Bland all
a* E A~ n A f that inequality (2) holds.

3. RESULTS FOR BANACH SPACES

From the definition we have (Ao+A I, Bo+BdElnt(A b 13). We will be
interested in taking a smaller space B in the place of the sum Bo+ B I' In
certain cases the next theorem determines how large B must be whenever
(Ao+AI,B) belongs to Int(A,13). The closure of BonB l in B i will be
denoted by B7, i = 0, 1.

THEOREM 1. Suppose that Ao#A I and (Ao+A l , B)Elnt(A, 13).

(a) If AonA I is not dense in both A o and AI then B=Bo+B1 •

(b) If AonA I is dense in A o and'not dense in Al then B=>Bg+B1 •

(c) If AonA I is dense in both A o and Al then B=>B8+B?
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Proof (a) We note that if Aon A I is not dense in A I_ i' or equivalently
that Ai is not dense in Ao+A I, then Ao+A I if:- A1o+ AI and by
by Proposition 2(a) we have B::J B1- i (i = 0, 1). This means that
B=Bo+BI·

(b) From the above we have B::J BI. Moreover, since
(Ao+AJ> BnBo)EInt((AJ> Ao+Ad, (BonB I, Bo)) it is sufficient to
prove

if Aoc A I' Ao¥- A I' Ao is dense in A I' Boc Bland
(AI, B) E Int(A, Ii) then B::J B?

(4)

Before the proof of (4) we note that if A o is a proper and dense subspace of
Al then At s;A3' and At is non-closed in A3'.

On the contrary, if At is closed in A3' then it is closed in the topology
a(A3', A o). Since At is dense in A3' in the topology a(A3' , Ao) we have
A3' = At and density of Ao in Al implies Ao= AI'

Now, we prove (4).
Applying Proposition l(a), the fact that At is non-closed in A3', and

Proposition 2(b) we have

/lBU, Bo, Bd = /lBU, Bo, Bd /lA;(t, At, A3') ~ Ct

for all t > 0. Hence

for each b E Bo and all t > O. Taking t ~ 0 + we get

Density of Bo in B? implies that the above inequality holds for each bE B?
Hence B::J B?

(c) By the same arguments as in the proof of (b) we have that B::J B8
and B::J B?, and so B::J B8 + B?

From the above theorem it is easy to construct examples of non­
interpolation spaces by first summing A o+ A I and then making B less than
B8+B?

In the proof of next theorem which gives non-interpolation spaces we
need the following lemmas.

LEMMA 1. Suppose that

there exists a sequence {bn}cBonBI such that Ilbnlloonol=l,
II bn II 01 ~°and II bn II 0 ~ C2 for some C2 > O. (5)
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If A if. Ao then there exists a sequence {Tn} of operators such that
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sup II Tn II L(A, B) ~ 1
n

and lim sup II Tn IIA ~B = 00.
n~ 00

(6)

Proof (cr. [12]). Let t-; 1 = II bn II Bl • Consider the linear operators
Tnx=bnfn(x), wherefn are bounded liner functionals on Ao+A l with

and

and a E A, II a II A ~ 1, a ¢ Ao. The existence of such functionals follows from
the Hahn~Banach theorem.

If x E Ai' then by (5)

II Tnx liB, = II bn liB, I fn(x)1 ~ II bnIIB,K(tn, x; Ao, Ad

~ II bn II B, t~ II x II Ai = II x II A,' i = 0, 1.

and

lim sup II Tnail B
n~ 00

= lim sup II bnIIBlfn(a)1
n~ 00

= lim sup II bn II BK(tn, a; Ao, Ad
n ~ 00

~ C2 lim sup K(tn , a; A o, AJ
n~ 00

=C2 lim K(t,a;Ao,Ad=oo,
t ~ 00

and the proof is complete,

LEMMA 2. If A l C .4'1',00 and limt~ 00 cp(t)jt = 0 then A l C Ao.

Proof First method. From assumptions there exists C3 > 0 such that

(7)

and there exists to> 0 such that cp(to)jto~ 1/(4C3)' By the definition of the
K-functional we can write (for to fixed) a = a l + b1 with

II alll Ao + to II blllA!

~ 2K(to, a; Ao, A 1) [from assumption (7)]
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and

Then similarly b l = a2 +b2 where

to to
II a211Ao ::;;"211 bIllA! ::;;4"11 a IIA! and

Ilb211A! ::;;2- 1 IlblII A!::;;2-21I aIIA!'

Proceeding by induction we get a = (a l + a2 + ... + an) + bn where

and

Since bn -+ 0 in Al and L:f' an E A o we get aE Ao and so Al c A o.
Second method (if additionally A"" 00 = A o+ Ad. First, we note that if

a E Ag + A? then K(t, a; Ag, A?) = K(t, a; A o, Ad and so

(Ag, A?)"" 00 = (A o, A I )"', 00 n (Ag + A?).

Hence, if A"" 00 =Ao+A I, then (Ag, A?)""oo =Ag+A? and we may assume
that AonA I is dense in both A o and AI' From the fact (Ao+Ad*=
At nAt and from Proposition l(c) (under the above density assumption)
we have

There are three mutually exclusive possibilities for A o and AI: (i) Al c A o,
(ii)AocA I and Ao#At> (iii)AonAI#A o and AonAI#A I.

Assumption limt~oo cp(t)/t=O and Proposition l(a), l(b) give that the
second and third cases are impossible. Hence Al c A o.

From the equality Ao,oo = Ao and Lemma 2 immediately follows the
Aronszajn-Gagliardo result (see [1]; see also [9,12,14]): if Ao=Ao+A I
then Ao=Ao+A I, i.e., Al cAo.

THEOREM 2. If Ai # A o+ A I and Bon B I is a non-closed subspace of
B I_ i then (A I_ i, B;)¢:Int(A,.8) (i=0 or 1).

Proof for i = O. From the assumption there exists a sequence
{bn} c Bon B I such that II bn II Bon HI = 1 and II bn II BI -+ O. It follows that

II bn II H! -+ 0,
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Since A o -=f- Ao+ A I we have by Lemma 2 that A I 1::. Ao. Applying Lemma 1
to couples A, B and spaces A = A I, B = Bo we have a sequence {Tn} of
operators such that

sup II Tn II L(A,B) :::::; 1
n

and lim sup II Tn II A[ --> Do = 00.
n-->w

Hence (A I, Bo) rf:- Int(.1, B).

Aronszajn and Gagliardo in [1] investigated when A o or A I belongs
to the set Int(A o+ A I, A on A d, i.e., when Ao or A I is an interpolation
space between sum Ao+A I and intersection AonA I (see also [12]).
Now, we consider the problem when A o or A I belongs to a bigger set
Int((A o, Ad, (AI' Ao))·

THEOREM 3. Let .1= (A o, AI), B= (AI' Ao) and suppose that
Ao-=f-AonA I , AI-=f-AonA I ·

(a) If AonA I is a non-closed subspace in Ai' then AI~irf:-Int(.1,B)

(i = 0 or 1).

(b) If Aon A I is closed in A o but not in AI, then A IE Int(.1, B) if and
only if AonA I is dense in AI'

(c) If A on A I is closed in both A o and A I, then A o, A I rf:- Int(.1, B).

Proof (a) This is a particular case of Theorem 2.

(b) If A on A I is dense in A I then we have

(A o+ AI)O = Ag + A? = (A on Ad + A? = AI'

Hence, if T E L(.1, B) then T is bounded from (A o+A 1)0 = A I into itself.
On the other hand, if Al E Int(.1, B) then Al c .1~o+A[ (if Al 1::. .1~o+Al then
by Proposition 2(a) we get AI:::J A o). Hence

i.e., A I = A7.
(c) Let Aon A I be closed in both Ao, A I and let A E Int(.1, B). Since

.110 + Al = Ai (i = 0, 1) we have four mutually exclusive possibilities for
A:(i)AcAo and AcA I , (ii)AcAo and A 1::. AI, (iii) A 1::. Ao and
AcA I , (iv) A 1::. A o and A 1::. AI'

The first case gives A = Aon A I' Proposition 2(a) implies that the second
and third cases are impossible, and the fourth case has the form A:::J Ao
and A:::J AI, Le., A =Ao+A I . Hence, only A on Al and Ao+ Al are
interpolation spaces with respect to (A o, A d and (A I, A o).
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4. RESULTS FOR SYMMETRIC SPACES

The necessary condition in Proposition 2(b) required the assumption of
density of the intersection in each of the spaces. In the case of symmetric
spaces (or even Banach lattices of measurable functions) it is possible to
obtain a necessary condition for interpolation by taking associated spaces
in the place of conjugate spaces.

A Banach space E of equivalence classes of measurable functions on
I = (0, I), 0< I::;;, 00, is said to be a symmetric space (on 1) if y E E and
measurable x are such that x*(t)::;;,y*(t) for tEl, then XEE and IlxlIE::;;'
II y II E (cf. [9]). Here x* denotes the non-increasing rearrangement of Ix I·

The associate space E' of a symmetric space E is the collection of all
measurable functions x for which

Ilxll£'= sup f Ix(t)y(t)ldt<oo.
IIYIIE";; 1 I

The fundamental function qJ = qJ E of a symmetric space E on I is defined
for tEl as qJ E(t) = 111 (O,t) II E, where 1(O,t) is the characteristic function of the
interval (0, t).

First we describe a necessary condition for the interpolation of
symmetric spaces. Namely, if (E, F) E Int(E, F) where E = (Eo, Ed and
F= (Fo, Fd, then

Vt>o. (2')

For the proof we consider the one-dimensional operator T: Eo +E 1 --+

Fo n F 1 defined by

Tx(t) = b(t) { x(s) a(s) ds,

Then

IITIIEi~Fi=llbIIFi sup If x(s)a(s)dsl
IIxIIE,";; 1 I

= II b II F, II a II E;, i = 0, 1,

and II TIIE~F= Ilbil FIlaII E ,·

The interpolation property implies that there exists a positive constant C
such that

II b II F II a II E' ::;;, C max { II b II Fo II a II E~ II b II Fj II a II E; },

VbEFonF1 , VaEE~nE~.

It can be proved that inequality (3') is equivalent to (2').

(3')
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Now, we prove that condition (3') or the equivalent condition (2') gives
more information than the well-known earlier (see [12, 13J) necessary
condition for interpolation, i.e., condition (3') with a = 1(0, t) and b = 1(0,5)'

Let Eo, E1, and E be symmetric spaces on I with the fundamental
functions <Po, <P 1> and <P, respectively.

THEOREM 4. Let 1= (0, 1). Suppose that L oo c E c Eland that either E
coincides with E" or L oo is dense in E 1 • If EElnt(Loo,Ed then one of the
three conditions holds:

or or I
, , f <p(t)
1m 1I1 -(- = CD.
t~O+ <PI t)

Proof Let <p(0+) :=limt~o+ <p(t)=O; 1I1 the opposite case E=L oo '
From (3') with a = 1(O,l)we have

for any bEL oo and all tEl. IfliminfHo+ (<P(t)/<Pl(t))=C4 then from the
above

(8)

First, let E = E". If x E E 1 then there exists a sequence (xn ) of bounded
functions such that 0 ~ X n )" 1x I· Since II X n II E ~ CC4 II X n II El ~ CC4 II x II El

we have by the Fatou property of E that x E E and Ii x II E = limn ~ ce

II X n IIE~ CC4 limn~ 00 II X n IIEI = CC4 11 xllEj' Hence E= E I ·

Second, if L oo is dense in E 1 then inequality (8) holds for any bE E 1 •

Hence E=E1 •

COROLLARY 1. Let 1=(0,1). If 1~ q <p < CD then L oo c Lpq c Lp and
Lpq¢lnt(L oo ' Lp) (see [10, Ex.!J). More generally, if 1 <P< CD and
1~q<r~ CD then L oo cLpqcLpr and Lpq¢lnt(L oo , Lpr ).

Finally, using (3') the following theorem can be proved in the same way
as Theorem 4.

THEOREM 5. Let Eo, E 1 , and E be symmetric spaces on I such that
Eo c E c El' E =f. E l' and either E coincides with E" or Eo is dense in E l' If
<p(t) = <Pl(t) for tEl and lim infHo+ (<p(t)/<Po(t)) =0 then Elf: Int E.

COROLLARY 2. We consider the Lorentz spaces L pq , Lpn and LSI
on 1=(0,1). If 1~q<r and 1~p<s then LstcLpqcLpr and
Lpq ¢ Int(Lst> L pr ).

640/56/3-8
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Remark 1. In Theorem 4 (and Theorem 5) assumptions that E
coincides with E" or L oo is dense in E 1 are important. Namely, if £1 is
non-separable, different from L oo , and takes for E the closure of L oo in E 1 ,

then E E Int(L oo , Ed and none of the three conditions in the assertion of
Theorem 4 is satisfied.

5. FUNDAMENTAL FUNCTION {I FOR SYMMETRIC SPACES

Let Eo, E 1, and E be symmetric spaces on I with the fundamental
functions q>o, q> l' and q>, respectively. Put q>1O(t) = <P 1(t)/q>0(t)·

1. If E E Int E then taking a = I(O,t) E Eo n E 1 in the definition of {IE and
in (3') we obtain

<p(t) q>(t)
-(-) ~ {lE(q>lO(t), Eo, Ed ~ C-(-),
q>o t q>o t

{lE(t) = sup J1E(S) min(l, tis)
5>0

VtEI. (9)

i.e.,

= sup {lE(q>10(S)) min(l, tlq>10(S))
5>0

q>(S) .
= sup -(-) mlll(l, tlq>lQ(S))

5>0q>O S

= sup q>(s) min (~()' ---.!-()),
5>0 q>o S q>1 S

(
It ){lE(t, Eo, Ed = sup q>(s) min -(-), -(-) .

5>0 q>o S q>1 S
(10)

In a particular case, {lE(t, L oo , Ld = q>(t). Assumption q>lQ(lR +) = IR + is
essential in formula (10). Namely, if q>o = q>1 = q> then the right-hand side in
equality (10) is equal to min(l, t) while the left-hand side can be equal to 1
as it was in Proposition 1(a).

In particular, if 1~Po <P <Pi ~ 00 then from the M. Riesz interpolation
theorem and the above

/I (t L L) = t(1/po-1/p)/(1/po-1/p!l
t"'Lp , po' Pl . (10')
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2. Assumption EEIntE is essential in formula (10). Namely, if
1=(0, 00) and 1 <p < 00 then

fLA(Lp+Loo)(t, L poo , Loo}

~ Ilmin(s-j/p, t)IIA(Lp+Loo )

= fOO min(s-I/P, t) dsmin(sj/p, 1}=fl min(s-I/p, t) ds l /
p

"0 0

if 0 < t::;; 1,

if t ~ 1.

However the right-hand side in equality (10) is equal to min(1, t).
3. For Eo,E1 , and E on /=(0,00) such that Eo"EjcE let the

following inequalities hold,

11

1(0'(lll ::;;Cj cP(t) and 111(t'oo)11 ::;;Co cp(t) (11)
CPI E CPj(t) CPo E CPo(t)

for some Co, Cj>O and all t>O. Then

(12)

Namely, for any aEEo"E j such that II a IIEo::;;1 and IlaIIE1::;;CPlO(t) we
have a*(s)::;; 1/cpo(s) and a*(s)::;; CPlO(t)/CPj(s) a.e., and so

II a II E= II a* II E::;; II a* 1(0, t) II E+ II a* 1(t, 00) II E

[from assumption (11)]

cP(t) cP(t) cp(t)
::;; C 1CPlO(t)-(-) + Co-(-) = (Co+ Cd-(-).

cP 1 t CPo t CPo t

i.e.,
cp( t}

fLE(CPlO(t))::;; (Co + Cd -(-)'
CPo t

Assumptions of type (11) can be found in [11], where the K-functional for
symmetric spaces is computed.

For example, if tacp(t)/CPo(t) is a decreasing function for some a> 0 then

cp(t) cp(t)
-)= fLE(1/CPo(t), Eo, Loo)::;; 2(2 + l/a)-(). (12')
CPo(t CPo t
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It is sufficient to prove inequalities (11). The first inequality with C 1 = 1 is
obvious; proof of the second inequality is the following (cf. [11]):

2-
1 II~II ::::; II~II = foo (~)* (s) d<p(s)

<Po E <Po A(E) 0 <Po

roo d<p(s) rt d<p(s) foo d<p(s)
= Jo <po(s + t)::::; Jo <po(t) + t <po(s)

::::; <p(t) + foo <p(s) ds::::; <p(t) + <p(t) t
a

foo~
<po(t) t <po(s) s <po(t) <po(t) t sl+a

<p(t)
=(1+1/a)-().

<Po t

Inequalities (12') can also be obtained from the formula IlE(I/<Po(t),
Eo,Loo)~suPliaIIEo"';l Ila*I(t,oo l IIE which was proved in [3, Th.7] in
connection with the Nikolski type inequality.

4. If 1= (0,1) and 1 <p < 00, 1 ::::;q< 00, then

IlLpq(t, L poo , Loo)~ Ilmin(s-l/p, t)IILpq

~ ~ ( [sl/Pmin(s-I/p, t)]q ~) I/q

if 0< t::::; 1,

if t ~ 1.

It would be of interest to compute ilL (t, L p , L oo ).pq

COROLLARY 3. Let 1= (0, 1). If 1 < p < 00 and 1 < q::::; 00 then
Lpl C Lpq C L 1 and L pq 1: Int(Lpl , L 1 ).

Proof Suppose that Lpq E Int(Lpl , Ld. Then by (2') the function

f(t) = IlLpq(t, Lpl , Ld IlLp'q,(t, L oo ' Lp'oo )/t

is bounded. However, if 0< t::::; 1 then by (9) we have 1::::; ilL (t, Lpl> Ld
-I pq

::::;C and b~ the above IlLp'q,(t,Loo,Lp'oo)=tIlLp'q,(t ,Lp'oo,Loo)~

t(1 +q'ln f)l/q. Hence limho + f(t) = 00, i.e.,jis unbounded and we have a
contradiction.
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