Notes on Non-interpolation Spaces

L. Maligranda
Institute of Mathematics, Polish Academy of Sciences, Mielżyńskiego 27/29, 61-725 Poznań, Poland

AND
M. Mastyeo

Institute of Mathematics, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland

Communicated by P. L. Butzer

Received October 24, 1985; revised November 28, 1986

Some general examples of non-interpolation pairs and spaces are presented. Necessary conditions for interpolation are established which determine the first type of examples. Constructions connected with the relative completion and a property of the K-functional provide the second class of examples. These techniques provide new information about non-interpolation of symmetric spaces. © 1989 Acadcmic Press, Inc.

1. Introduction

We recall some notation from interpolation theory (cf. [2, 9]).
A pair $\bar{A}=\left(A_{0}, A_{1}\right)$ of Banach spaces is called a Banach couple if A_{0} and A_{1} are both continuously imbedded in some Hausdorff topological vector space V.

For a Banach couple $\bar{A}=\left(A_{0}, A_{1}\right)$ we can form the intersection $\Delta(\bar{A})=A_{0} \cap A_{1}$ and the sum $\sum(\bar{A})=A_{0}+A_{1}$. They are both Banach spaces in the natural norms

$$
\|a\|_{A_{0} \cap A_{1}}=J\left(1, a ; A_{0}, A_{1}\right) \quad \text { and } \quad\|a\|_{A_{0}+A_{1}}=K\left(1, a ; A_{0}, A_{1}\right)
$$

where, for $t>0$,

$$
J(t, a)=J\left(t, a ; A_{0}, A_{1}\right)=\max \left(\|a\|_{A_{0}}, t\|a\|_{A_{1}}\right)
$$

and

$$
\begin{array}{r}
K(t, a)=K\left(t, a ; A_{0}, A_{1}\right)=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+t\left\|a_{1}\right\|_{A_{1}}:\right. \\
\left.a=a_{0}+a_{1}, a_{0} \in A_{0}, a_{1} \in A_{1}\right\} .
\end{array}
$$

A Banach space A is called an intermediate space between A_{0} and A_{1} (or with respect to \bar{A}) if $A_{0} \cap A_{1} \subset A \subset A_{0}+A_{1}$ with continuous inclusions. For brevity, the closure of $A_{0} \cap A_{1}$ in A will be denoted by A^{0}.

Let $\bar{A}=\left(A_{0}, A_{1}\right)$ and $\bar{B}=\left(B_{0}, B_{1}\right)$ be two Banach couples. We denote by $L(\bar{A}, \bar{B})$ the Banach space of all linear operators $T: A_{0}+A_{1} \rightarrow B_{0}+B_{1}$ such that the restriction of T to the space A_{i} is a bounded operator from A_{i} into $B_{i}, i=0,1$, with the norm

$$
\|T\|_{L(\bar{A}, \bar{B})}=\max \left(\|T\|_{A_{0} \rightarrow B_{0}},\|T\|_{A_{1} \rightarrow B_{1}}\right) .
$$

We say that two intermediate spaces A and B are called interpolation spaces with respect to \bar{A} and \bar{B} and we will write $(A, B) \in \operatorname{Int}(\bar{A}, \bar{B})$ if every linear operator from $L(\bar{A}, \bar{B})$ maps A into B. It is a consequence of the closed graph theorem that then the restriction of T to A is the bounded operator from A into B and

$$
\begin{equation*}
\|T\|_{A \rightarrow B} \leqslant C\|T\|_{L(\bar{A}, \bar{B})} \tag{1}
\end{equation*}
$$

for some positive constant C independent of $T \in L(\bar{A}, \bar{B})$. If A coincides with B then A is called an interpolation space with respect to \bar{A} and \bar{B} and we write $A \in \operatorname{Int}(\bar{A}, \bar{B})$; if, moreover, $A_{0}=B_{0}$ and $A_{1}=B_{1}$ then A is called an interpolation space between A_{0} and A_{1} (or with respect to \bar{A}), and we write $A \in \operatorname{Int} \bar{A}$.

Let \mathscr{P} denote the set of all functions $\varphi:(0, \infty) \rightarrow(0, \infty)$ such that $\varphi(s) \leqslant$ $\max (1, s / t) \varphi(t)$ for all $s, t>0$. We then define the space $\bar{A}_{\varphi, \infty}=$ $\left(A_{0}, A_{1}\right)_{\varphi, \infty}$ as the space of all $a \in A_{0}+A_{1}$ such that

$$
\|a\|_{\varphi, \infty}=\sup _{t>0} \frac{K\left(t, a ; A_{0}, A_{1}\right)}{\varphi(t)}
$$

is finite; if $\varphi(t)=t^{\theta}(0 \leqslant \theta \leqslant 1)$ we write, in short, $\bar{A}_{\theta, \infty}$ and $\|a\|_{\theta, \infty}$. We note that $\bar{A}_{0, \infty}$ is the space of all $a \in A_{0}+A_{1}$ such that $\lim _{t \rightarrow \infty}$ $K\left(t, a ; A_{0}, A_{1}\right)<\infty ;$ it can be proved that $\bar{A}_{0, \infty}$ is a relative completion \widetilde{A}_{0} of A_{0} with respect to $A_{0}+A_{1}$.

The plan of the paper is as follows:
In Section 2 we discuss necessary conditions for interpolation using, among other things, the fundamental function μ.

In Section 3 first we study interpolation spaces A and B with respect to \bar{A} and \bar{B}, where A is the sum $A_{0}+A_{1}(\mathrm{Th} .1)$. In Theorem 2 we give a result on non-interpolation of A_{i} and $B_{1-i}(i=0,1)$ with respect to \bar{A} and \bar{B} based on considerations in [12]. In Theorem 3 we investigate when A_{0} or A_{1} is an interpolation space with respect to $\bar{A}=\left(A_{0}, A_{1}\right)$ and $\bar{B}=\left(A_{1}, A_{0}\right)$. These results contain some results of Aronszajn and Gagliardo [1].

In Section 4, the above results are applied to an important class of
symmetric spaces, in particular to Lorentz spaces. For example, Theorem 4 characterizes interpolation spaces between L_{∞} and E_{1}.

Finally, in Section 5, we have collected various results giving μ for symmetric spaces.

2. Fundamental Functions and Necessary CONDITIONS FOR INTERPOLATION

For a Banach space A containing $A_{0} \cap A_{1} \neq\{0\}$ (or for a Banach space A contained in $\left.A_{0}+A_{1}\right)$ the fundamental function $\mu_{A}\left(v_{A}\right)$ is given for $t>0$ by

$$
\begin{aligned}
\mu_{A}(t) & =\mu_{A}\left(t, A_{0}, A_{1}\right)=\sup _{0 \neq a \in A_{0} \cap A_{1}} \frac{\|a\|_{A}}{J\left(t^{-1}, a ; A_{0}, A_{1}\right)} \\
& =\sup _{\|a\|_{A_{0}} \leqslant 1,\|a\|_{A_{1}} \leqslant t}\|a\|_{A}, \\
\left(v_{A}(t)\right. & \left.=v_{A}\left(t, A_{0}, A_{1}\right)=\sup _{0 \neq a \in A} \frac{t K\left(t^{-1}, a ; A_{0}, A_{1}\right)}{\|a\|_{A}}\right) .
\end{aligned}
$$

We note that $\mu_{A}, v_{A} \in \mathscr{P}, \mu_{A}(1)$ is the norm of imbedding $A_{0} \cap A_{1}$ into A, and $v_{A}(1)$ is the norm of imbedding A into $A_{0}+A_{1}$.

Let us investigate properties of these functions which we will need; other properties of μ_{A} in the case of symmetric spaces will be considered in Section 5.

Proposition 1. (a) Suppose that $A_{0} \subset A_{1}$. If A_{0} is non-closed in A_{1} then $\mu_{A_{0}}(t)=1$ for all $t>0$; if A_{0} is closed in A_{1} then $\mu_{A_{0}}(t) \approx \min (1, t)^{1}$.
(b) If $A_{0} \cap A_{1}$ is a non-closed subspace in both A_{0} and A_{1} then $\mu_{A_{0} \cap A_{1}}(t)=\max (1, t)$.
(c) If $A_{0} \cap A_{1}$ is dense in both A_{0} and A_{1} and if A is intermediate space between A_{0} and A_{1} then $v_{A}\left(t, A_{0}, A_{1}\right)=\mu_{A^{*}}\left(t, A_{1}^{*}, A_{0}^{*}\right)$.

Proof. Obviously $\min (1, t) \mu_{A_{0}}(1) \leqslant \mu_{A_{0}}(t) \leqslant 1$ for all $t>0$.
(a) If A_{0} is non-closed in A_{1} then there exists a sequence $\left\{a_{n}\right\} \subset A_{0}$ such that $\left\|a_{n}\right\|_{A_{0}}=1$ and $\left\|a_{n}\right\|_{A_{1}} \rightarrow 0$. Hence

$$
\mu_{A_{0}}(t) \geqslant \lim _{n \rightarrow \infty} \frac{\left\|a_{n}\right\|_{A_{0}}}{J\left(t^{-1}, a_{n}\right)}=1
$$

[^0]If A_{0} is closed in A_{1} then $\|a\|_{A_{0}} \leqslant C_{1}\|a\|_{A_{1}}$ for each $a \in A_{0}$ and so

$$
\frac{\|a\|_{A_{0}}}{J\left(t^{-1}, a\right)} \leqslant \min \left(1, t\|a\|_{A_{0}} /\|a\|_{A_{1}}\right) \leqslant \max \left(1, C_{1}\right) \min (1, t)
$$

(b) Since $\|a\|_{A_{0} \cap A_{1}} \leqslant \max (1, t) J\left(t^{-1}, a\right)$ it follows that $\mu_{A_{0} \cap A_{1}}(t) \leqslant$ $\max (1, t)$. From the assumptions there exist sequences $\left\{a_{n}^{i}\right\} \subset A_{0} \cap A_{1}$ such that $\left\|a_{n}^{i}\right\|_{A_{0} \cap A_{1}}=1$ and $\lim _{n \rightarrow \infty}\left\|a_{n}^{i}\right\|_{A_{i}}=0, i=0,1$. Hence

$$
\begin{aligned}
\mu_{A_{0} \cap A_{1}}(t) & =\max \left(\mu_{A_{0}}(t), \mu_{A_{1}}(t)\right) \\
& \geqslant \max \left(\lim _{n \rightarrow \infty} \frac{\left\|a_{n}^{1}\right\|_{A_{0}}}{J\left(t^{-1}, a_{n}^{1}\right)}, \lim _{n \rightarrow \infty} \frac{\left\|a_{n}^{0}\right\|_{A_{1}}}{J\left(t^{-1}, a_{n}^{0}\right)}\right)=\max (1, t)
\end{aligned}
$$

(c) If $A_{0} \cap A_{1}$ is dense in both A_{0} and A_{1} then $\left(A_{0}^{*}, A_{1}^{*}\right)$ is a Banach couple and if A is an intermediate space between A_{0} and A_{1} then A^{*} contains $A_{0}^{*} \cap A_{1}^{*}$. Moreover since $K\left(t^{-1}, a ; A_{0}, A_{1}\right)$ and $J\left(t, a^{*} ; A_{0}^{*}, A_{1}^{*}\right)$ are dual norms (cf. [2]), it follows that

$$
\begin{aligned}
v_{A}(t) & =\sup _{a \in A} \frac{t}{\|a\|_{A}} \sup _{a^{*} \in A_{0}^{*} \cap A_{1}^{*}} \frac{\left|a^{*}(a)\right|}{J\left(t, a^{*} ; A_{0}^{*}, A_{1}^{*}\right)} \\
& =\sup _{a^{*} \in A_{0}^{*} \cap A_{1}^{*}} \frac{1}{J\left(t^{-1}, a^{*} ; A_{1}^{*}, A_{0}^{*}\right)} \sup _{a \in A} \frac{\left|a^{*}(a)\right|}{\|a\|_{A}} \\
& =\sup _{a^{*} \in A_{0}^{*} \cap A_{1}^{*}} \frac{\left\|a^{*}\right\|_{A^{*}}}{J\left(t^{-1}, a^{*} ; A_{1}^{*}, A_{0}^{*}\right)}=\mu_{A^{*}}\left(t . A_{1}^{*}, A_{0}^{*}\right) .
\end{aligned}
$$

The following proposition is similar to Lemma 7. III in [1] and Lemma 4 in [6] (for completeness sake we give a proof).

Proposition 2 (Necessary Conditions). Let $(A, B) \in \operatorname{Int}(\bar{A}, \bar{B})$.
(a) If $A \not \subset \bar{A}_{i}^{A_{0}+A_{1}}$ then $B \supset B_{1-i}, i=0,1$.
(b) If $A_{0} \cap A_{1}$ is dense in both A_{0} and A_{1} then

$$
\begin{equation*}
\mu_{B}\left(t, B_{0}, B_{1}\right) \mu_{A^{*}}\left(t, A_{1}^{*}, A_{0}^{*}\right) \leqslant C t \tag{2}
\end{equation*}
$$

for all $t \geqslant 0$.
Proof. (a) Let $a \in A, \quad a \notin \bar{A}_{i}^{A_{0}+A_{1}}$, and let f be a bounded linear functional on $A_{0}+A_{1}$ vanishing on $\bar{A}_{i}^{A_{0}+A_{1}}$ and $f(a)=1$.

For any $b \in B_{1-i}$ the linear operator $T x=f(x) b$ belongs to $L(\bar{A}, \bar{B})$. Hence $b=T a \in B$ and

$$
\|b\|_{B}=\|T a\|_{B} \leqslant\|T\|_{A \rightarrow B}\|a\|_{A} \leqslant C\|f\|_{A_{1-1}^{*}}\|b\|_{B_{1-,}}\|a\|_{A} .
$$

This proves assertion (a).
(b) We consider the one-dimensional operator $T: A_{0}+A_{1} \rightarrow$ $B_{0} \cap B_{1}, T a=a^{*}(a) b$, where $a^{*} \in A_{0}^{*} \cap A_{1}^{*}=\left(A_{0}+A_{1}\right)^{*}$ and $b \in B_{0} \cap B_{1}$. We have
and

$$
\|T\|_{A_{i} \rightarrow B_{i}}=\|b\|_{B_{i}} \sup _{\|a\|_{i} \leqslant 1}\left|a^{*}(a)\right|=\|b\|_{B_{i}}\left\|a^{*}\right\|_{A_{i}^{*}}, \quad i=0,1
$$

$$
\|T\|_{A \rightarrow B}=\|b\|_{B}\left\|a^{*}\right\|_{A^{*}}
$$

The interpolation property implies that there exists a constant $C>0$ such that

$$
\begin{array}{r}
\|b\|_{B}\left\|a^{*}\right\|_{A^{*}} \leqslant C \max \left\{\|b\|_{B_{0}}\left\|a^{*}\right\|_{A_{0}^{*}},\|b\|_{B_{1}}\left\|a^{*}\right\|_{A_{1}^{*}}\right\}, \\
\forall b \in B_{0} \cap B_{1}, \forall a^{*} \in A_{0}^{*} \cap A_{1}^{*} . \tag{3}
\end{array}
$$

Since
$\max \left\{\|b\|_{B_{0}}\left\|a^{*}\right\|_{A_{0}^{*}},\|b\|_{B_{1}}\left\|a^{*}\right\|_{A_{1}^{*}}\right\} \leqslant t J\left(t^{-1}, b ; B_{0}, B_{1}\right) J\left(t^{-1}, a^{*} ; A_{1}^{*}, A_{0}^{*}\right)$
it follows from (3) by taking the supremum over all $b \in B_{0} \cap B_{1}$ and all $a^{*} \in A_{0}^{*} \cap A_{1}^{*}$ that inequality (2) holds.

3. Results for Banach Spaces

From the definition we have $\left(A_{0}+A_{1}, B_{0}+B_{1}\right) \in \operatorname{Int}\left(\bar{A}_{1}, \bar{B}\right)$. We will be interested in taking a smaller space B in the place of the sum $B_{0}+B_{1}$. In certain cases the next theorem determines how large B must be whenever $\left(A_{0}+A_{1}, B\right)$ belongs to $\operatorname{Int}(\bar{A}, \bar{B})$. The closure of $B_{0} \cap B_{1}$ in B_{i} will be denoted by $B_{i}^{0}, i=0,1$.

Theorem 1. Suppose that $A_{0} \neq A_{1}$ and $\left(A_{0}+A_{1}, B\right) \in \operatorname{Int}(\bar{A}, \bar{B})$.
(a) If $A_{0} \cap A_{1}$ is not dense in both A_{0} and A_{1} then $B=B_{0}+B_{1}$.
(b) If $A_{0} \cap A_{1}$ is dense in A_{0} and not dense in A_{1} then $B \supset B_{0}^{0}+B_{1}$.
(c) If $A_{0} \cap A_{1}$ is dense in both A_{0} and A_{1} then $B \supset B_{0}^{0}+B_{1}^{0}$.

Proof. (a) We note that if $A_{0} \cap A_{1}$ is not dense in A_{1-i}, or equivalently that A_{i} is not dense in $A_{0}+A_{1}$, then $A_{0}+A_{1} \not \subset \bar{A}_{i}^{A_{0}+A_{1}}$ and by by Proposition 2(a) we have $B \supset B_{1-i}(i=0,1)$. This means that $B=B_{0}+B_{1}$.
(b) From the above we have $B \supset B_{1}$. Moreover, since $\left(A_{0}+A_{1}, B \cap B_{0}\right) \in \operatorname{Int}\left(\left(A_{1}, A_{0}+A_{1}\right), \quad\left(B_{0} \cap B_{1}, B_{0}\right)\right)$ it is sufficient to prove

$$
\begin{align*}
& \text { if } A_{0} \subset A_{1}, A_{0} \neq A_{1}, A_{0} \text { is dense in } A_{1}, B_{0} \subset B_{1} \text { and } \\
& \left(A_{1}, B\right) \in \operatorname{Int}(\bar{A}, \bar{B}) \text { then } B \supset B_{1}^{0} \tag{4}
\end{align*}
$$

Before the proof of (4) we note that if A_{0} is a proper and dense subspace of A_{1} then $A_{1}^{*} \subseteq A_{0}^{*}$ and A_{1}^{*} is non-closed in A_{0}^{*}.

On the contrary, if A_{1}^{*} is closed in A_{0}^{*} then it is closed in the topology $\sigma\left(A_{0}^{*}, A_{0}\right)$. Since A_{1}^{*} is dense in A_{0}^{*} in the topology $\sigma\left(A_{0}^{*}, A_{0}\right)$ we have $A_{0}^{*}=A_{1}^{*}$ and density of A_{0} in A_{1} implies $A_{0}=A_{1}$.

Now, we prove (4).
Applying Proposition 1(a), the fact that A_{1}^{*} is non-closed in A_{0}^{*}, and Proposition 2(b) we have

$$
\mu_{B}\left(t, B_{0}, B_{1}\right)=\mu_{B}\left(t, B_{0}, B_{1}\right) \mu_{A_{1}^{*}}\left(t, A_{1}^{*}, A_{0}^{*}\right) \leqslant C t
$$

for all $t>0$. Hence

$$
\|b\|_{B} \leqslant C \max \left(t\|b\|_{B_{0}},\|b\|_{B_{1}}\right)
$$

for each $b \in B_{0}$ and all $t>0$. Taking $t \rightarrow 0^{+}$we get

$$
\|b\|_{B} \leqslant C\|b\|_{B_{1}}, \quad \forall b \in B_{1}
$$

Density of B_{0} in B_{1}^{0} implies that the above inequality holds for each $b \in B_{1}^{0}$. Hence $B \supset B_{1}^{0}$.
(c) By the same arguments as in the proof of (b) we have that $B \supset B_{0}^{0}$ and $B \supset B_{1}^{0}$, and so $B \supset B_{0}^{0}+B_{1}^{0}$.

From the above theorem it is easy to construct examples of noninterpolation spaces by first summing $A_{0}+A_{1}$ and then making B less than $B_{0}^{0}+B_{1}^{0}$.

In the proof of next theorem which gives non-interpolation spaces we need the following lemmas.

Lemma 1. Suppose that

there exists a sequence $\left\{b_{n}\right\} \subset B_{0} \cap B_{1}$ such that $\left\|b_{n}\right\|_{B_{0} \cap B_{1}}=1$, $\left\|b_{n}\right\|_{B_{1}} \rightarrow 0$ and $\left\|b_{n}\right\|_{B} \geqslant C_{2}$ for some $C_{2}>0$.

If $A \notin \tilde{A}_{0}$ then there exists a sequence $\left\{T_{n}\right\}$ of operators such that

$$
\begin{equation*}
\sup _{n}\left\|T_{n}\right\|_{L_{(A, B)}} \leqslant 1 \quad \text { and } \quad \limsup _{n \rightarrow \infty}\left\|T_{n}\right\|_{A \rightarrow B}=\infty \tag{6}
\end{equation*}
$$

Proof (cf. [12]). Let $t_{n}^{-1}=\left\|b_{n}\right\|_{B_{1}}$. Consider the linear operators $T_{n} x=b_{n} f_{n}(x)$, where f_{n} are bounded liner functionals on $A_{0}+A_{1}$ with

$$
\left|f_{n}(x)\right| \leqslant K\left(t_{n}, x ; A_{0}, A_{1}\right) \quad \text { and } \quad f_{n}(a)=K\left(t_{n}, a ; A_{0}, A_{1}\right)
$$

and $a \in A,\|a\|_{A} \leqslant 1, a \notin \tilde{A}_{0}$. The existence of such functionals follows from the Hahn Banach theorem.

If $x \in A_{i}$, then by (5)

$$
\begin{aligned}
\left\|T_{n} x\right\|_{B_{1}} & =\left\|b_{n}\right\|_{B_{i}}\left|f_{n}(x)\right| \leqslant\left\|b_{n}\right\|_{B_{1}} K\left(t_{n}, x ; A_{0}, A_{1}\right) \\
& \leqslant\left\|b_{n}\right\|_{B_{i}} t_{n}^{i}\|x\|_{A_{i}}=\|x\|_{A_{i}}, \quad i=0,1 .
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{n \rightarrow \infty} & \sup \left\|T_{n} a\right\|_{B} \\
& =\limsup _{n \rightarrow \infty}\left\|b_{n}\right\|_{B}\left|f_{n}(a)\right| \\
& =\lim _{n \rightarrow \infty} \sup \left\|b_{n}\right\|_{B} K\left(t_{n}, a ; A_{0}, A_{1}\right) \\
& \geqslant C_{2} \lim _{n \rightarrow \infty} \sup K\left(t_{n}, a ; A_{0}, A_{1}\right) \\
& =C_{2} \lim _{t \rightarrow \infty} K\left(t, a ; A_{0}, A_{1}\right)=\infty,
\end{aligned}
$$

and the proof is complete,
Lemma 2. If $A_{1} \subset \bar{A}_{\varphi, \infty}$ and $\lim _{t \rightarrow \infty} \varphi(t) / t=0$ then $A_{1} \subset A_{0}$.
Proof. First method. From assumptions there exists $C_{3}>0$ such that

$$
\begin{equation*}
K\left(t, a ; A_{0}, A_{1}\right) \leqslant C_{3} \varphi(t)\|a\|_{A_{1}}, \quad \forall a \in A_{1}, \forall t>0, \tag{7}
\end{equation*}
$$

and there exists $t_{0}>0$ such that $\varphi\left(t_{0}\right) / t_{0} \leqslant 1 /\left(4 C_{3}\right)$. By the definition of the K-functional we can write (for t_{0} fixed) $a=a_{1}+b_{1}$ with

$$
\begin{aligned}
& \left\|a_{1}\right\|_{A_{0}}+t_{0}\left\|b_{1}\right\|_{A_{1}} \\
& \quad \leqslant 2 K\left(t_{0}, a ; A_{0}, A_{1}\right)[\text { from assumption (7)] } \\
& \quad \leqslant 2 C_{3} \varphi\left(t_{0}\right)\|a\|_{A_{1}} \leqslant \frac{t_{0}}{2}\|a\|_{A_{1}},
\end{aligned}
$$

i.e.,

$$
\left\|a_{1}\right\|_{A_{0}} \leqslant \frac{t_{0}}{2}\|a\|_{A_{1}} \quad \text { and } \quad\left\|b_{1}\right\|_{A_{1}} \leqslant 2^{-1}\|a\|_{A_{1}}
$$

Then similarly $b_{1}=a_{2}+b_{2}$ where

$$
\begin{aligned}
& \left\|a_{2}\right\|_{A_{0}} \leqslant \frac{t_{0}}{2}\left\|b_{1}\right\|_{A_{1}} \leqslant \frac{t_{0}}{4}\|a\|_{A_{1}} \quad \text { and } \\
& \left\|b_{2}\right\|_{A_{1}} \leqslant 2^{-1}\left\|b_{1}\right\|_{A_{1}} \leqslant 2^{-2}\|a\|_{A_{1}} .
\end{aligned}
$$

Proceeding by induction we get $a=\left(a_{1}+a_{2}+\cdots+a_{n}\right)+b_{n}$ where

$$
\left\|a_{n}\right\|_{A_{0}} \leqslant 2^{-n} t_{0}\|a\|_{A_{1}} \quad \text { and } \quad\left\|b_{n}\right\|_{A_{1}} \leqslant 2^{-n}\|a\|_{A_{1}}
$$

Since $b_{n} \rightarrow 0$ in A_{1} and $\sum_{1}^{\infty} a_{n} \in A_{0}$ we get $a \in A_{0}$ and so $A_{1} \subset A_{0}$.
Second method (if additionally $\bar{A}_{\varphi, \infty}=A_{0}+A_{1}$). First, we note that if $a \in A_{0}^{0}+A_{1}^{0}$ then $K\left(t, a ; A_{0}^{0}, A_{1}^{0}\right)=K\left(t, a ; A_{0}, A_{1}\right)$ and so

$$
\left(A_{0}^{0}, A_{1}^{0}\right)_{\varphi, \infty}=\left(A_{0}, A_{1}\right)_{\varphi, \infty} \cap\left(A_{0}^{0}+A_{1}^{0}\right) .
$$

Hence, if $\bar{A}_{\varphi, \infty}=A_{0}+A_{1}$, then $\left(A_{0}^{0}, A_{1}^{0}\right)_{\varphi, \infty}=A_{0}^{0}+A_{1}^{0}$ and we may assume that $A_{0} \cap A_{1}$ is dense in both A_{0} and A_{1}. From the fact $\left(A_{0}+A_{1}\right)^{*}=$ $A_{0}^{*} \cap A_{1}^{*}$ and from Proposition 1(c) (under the above density assumption) we have

$$
\begin{aligned}
\frac{\varphi(t)}{t} & \geqslant v_{A_{\varphi, \infty}}\left(t^{-1}, A_{0}, A_{1}\right) \approx v_{A_{0}+A_{1}}\left(t^{-1}, A_{0}, A_{1}\right) \\
& =\mu_{\left(A_{0}+A_{1}\right)^{*}}\left(t^{-1}, A_{1}^{*}, A_{0}^{*}\right)=\mu_{A_{0}^{*} \cap A_{1}^{*}}\left(t^{-1}, A_{1}^{*}, A_{0}^{*}\right)
\end{aligned}
$$

There are three mutually exclusive possibilities for A_{0} and A_{1} : (i) $A_{1} \subset A_{0}$, (ii) $A_{0} \subset A_{1}$ and $A_{0} \neq A_{1}$, (iii) $A_{0} \cap A_{1} \neq A_{0}$ and $A_{0} \cap A_{1} \neq A_{1}$.

Assumption $\lim _{t \rightarrow \infty} \varphi(t) / t=0$ and Proposition 1(a), 1(b) give that the second and third cases are impossible. Hence $A_{1} \subset A_{0}$.

From the equality $\bar{A}_{0, \infty}=\tilde{A}_{0}$ and Lemma 2 immediately follows the Aronszajn-Gagliardo result (see [1]; see also [9, 12, 14]): if $\tilde{A}_{0}=A_{0}+A_{1}$ then $A_{0}=A_{0}+A_{1}$, i.e., $A_{1} \subset A_{0}$.

Theorem 2. If $A_{i} \neq A_{0}+A_{1}$ and $B_{0} \cap B_{1}$ is a non-closed subspace of B_{1-i} then $\left(A_{1-i}, B_{i}\right) \notin \operatorname{Int}(\bar{A}, \bar{B})(i=0$ or 1$)$.

Proof for $i=0$. From the assumption there exists a sequence $\left\{b_{n}\right\} \subset B_{0} \cap B_{1}$ such that $\left\|b_{n}\right\|_{B_{0} \cap B_{1}}=1$ and $\left\|b_{n}\right\|_{B_{1}} \rightarrow 0$. It follows that

$$
\left\|b_{n}\right\|_{B_{0} \cap B_{1}}=1, \quad\left\|b_{n}\right\|_{B_{1}} \rightarrow 0, \quad\left\|b_{n}\right\|_{B_{0}}=1
$$

Since $A_{0} \neq A_{0}+A_{1}$ we have by Lemma 2 that $A_{1} \not \subset \tilde{A}_{0}$. Applying Lemma 1 to couples \bar{A}, \bar{B} and spaces $A=A_{1}, B=B_{0}$ we have a sequence $\left\{T_{n}\right\}$ of operators such that

$$
\sup _{n}\left\|T_{n}\right\|_{L(\bar{A}, \bar{B})} \leqslant 1 \quad \text { and } \quad \limsup _{n \rightarrow \infty}\left\|T_{n}\right\|_{A_{1} \rightarrow B_{0}}=\infty
$$

Hence $\left(A_{1}, B_{0}\right) \notin \operatorname{Int}(\bar{A}, \bar{B})$.
Aronszajn and Gagliardo in [1] investigated when A_{0} or A_{1} belongs to the set $\operatorname{Int}\left(A_{0}+A_{1}, A_{0} \cap A_{1}\right)$, i.e., when A_{0} or A_{1} is an interpolation space between sum $A_{0}+A_{1}$ and intersection $A_{0} \cap A_{1}$ (see also [12]). Now, we consider the problem when A_{0} or A_{1} belongs to a bigger set $\operatorname{Int}\left(\left(A_{0}, A_{1}\right),\left(A_{1}, A_{0}\right)\right)$.

Theorem 3. Let $\bar{A}=\left(A_{0}, A_{1}\right), \quad \bar{B}=\left(A_{1}, A_{0}\right)$ and suppose that $A_{0} \neq A_{0} \cap A_{1}, A_{1} \neq A_{0} \cap A_{1}$.
(a) If $A_{0} \cap A_{1}$ is a non-closed subspace in A_{i}, then $A_{1-i} \notin \operatorname{Int}(\bar{A}, \bar{B})$ ($i=0$ or 1).
(b) If $A_{0} \cap A_{1}$ is closed in A_{0} but not in A_{1}, then $A_{1} \in \operatorname{Int}(\bar{A}, \bar{B})$ if and only if $A_{0} \cap A_{1}$ is dense in A_{1}.
(c) If $A_{0} \cap A_{1}$ is closed in both A_{0} and A_{1}, then $A_{0}, A_{1} \notin \operatorname{Int}(\bar{A}, \bar{B})$.

Proof. (a) This is a particular case of Theorem 2.
(b) If $A_{0} \cap A_{1}$ is dense in A_{1} then we have

$$
\left(A_{0}+A_{1}\right)^{0}=A_{0}^{0}+A_{1}^{0}=\left(A_{0} \cap A_{1}\right)+A_{1}^{0}=A_{1} .
$$

Hence, if $T \in L(\bar{A}, \bar{B})$ then T is bounded from $\left(A_{0}+A_{1}\right)^{0}=A_{1}$ into itself. On the other hand, if $A_{1} \in \operatorname{Int}(\bar{A}, \bar{B})$ then $A_{1} \subset \bar{A}_{0}^{A_{0}+A_{1}}$ (if $A_{1} \not \subset \bar{A}_{0}^{A_{0}+A_{1}}$ then by Proposition 2(a) we get $\left.A_{1} \supset A_{0}\right)$. Hence

$$
A_{1} \subset \bar{A}_{0}^{A_{0}+A_{1}} \cap \bar{A}_{1}^{A_{0}+A_{1}}=\left(A_{0}+A_{1}\right)^{0}=A_{0}^{0}+A_{1}^{0}=A_{1}^{0},
$$

i.e., $A_{1}=A_{1}^{0}$.
(c) Let $A_{0} \cap A_{1}$ be closed in both A_{0}, A_{1} and let $A \in \operatorname{Int}(\bar{A}, \bar{B})$. Since $\bar{A}_{i}^{t_{0}+A_{1}}=A_{i}(i=0,1)$ we have four mutually exclusive possibilities for A : (i) $A \subset A_{0}$ and $A \subset A_{1}$, (ii) $A \subset A_{0}$ and $A \nsubseteq A_{1}$, (iii) $A \nsubseteq A_{0}$ and $A \subset A_{1}$, (iv) $A \not \subset A_{0}$ and $A \not \subset A_{1}$.

The first case gives $A=A_{0} \cap A_{1}$. Proposition 2(a) implies that the second and third cases are impossible, and the fourth case has the form $A \supset A_{0}$ and $A \supset A_{1}$, i.e., $A=A_{0}+A_{1}$. Hence, only $A_{0} \cap A_{1}$ and $A_{0}+A_{1}$ are interpolation spaces with respect to $\left(A_{0}, A_{1}\right)$ and $\left(A_{1}, A_{0}\right)$.

4. Results for Symmetric Spaces

The necessary condition in Proposition 2(b) required the assumption of density of the intersection in each of the spaces. In the case of symmetric spaces (or even Banach lattices of measurable functions) it is possible to obtain a necessary condition for interpolation by taking associated spaces in the place of conjugate spaces.

A Banach space E of equivalence classes of measurable functions on $I=(0, l), 0<l \leqslant \infty$, is said to be a symmetric space (on I) if $y \in E$ and measurable x are such that $x^{*}(t) \leqslant y^{*}(t)$ for $t \in I$, then $x \in E$ and $\|x\| E \leqslant$ $\|y\|_{E}$ (cf. [9]). Here x^{*} denotes the non-increasing rearrangement of $|x|$.

The associate space E^{\prime} of a symmetric space E is the collection of all measurable functions x for which

$$
\|x\|_{E^{u}}=\sup _{\|y\|_{E} \leqslant 1} \int_{I}|x(t) y(t)| d t<\infty
$$

The fundamental function $\varphi=\varphi_{E}$ of a symmetric space E on I is defined for $t \in I$ as $\varphi_{E}(t)=\left\|1_{(0, t)}\right\|_{E}$, where $1_{(0, t)}$ is the characteristic function of the interval $(0, t)$.

First we describe a necessary condition for the interpolation of symmetric spaces. Namely, if $(E, F) \in \operatorname{Int}(\bar{E}, \bar{F})$ where $\bar{E}=\left(E_{0}, E_{1}\right)$ and $\bar{F}=\left(F_{0}, F_{1}\right)$, then

$$
\mu_{F}\left(t, F_{0}, F_{1}\right) \mu_{E^{\prime}}\left(t, E_{1}^{\prime}, E_{0}^{\prime}\right) \leqslant C t, \quad \forall t>0
$$

For the proof we consider the one-dimensional operator $T: E_{0}+E_{1} \rightarrow$ $F_{0} \cap F_{1}$ defined by

$$
T x(t)=b(t) \int_{I} x(s) a(s) d s, \quad b \in F_{0} \cap F_{1}, a \in E_{0}^{\prime} \cap E_{1}^{\prime}
$$

Then

$$
\begin{aligned}
\|T\|_{E_{i} \rightarrow F_{i}} & =\|b\|_{F_{i}} \sup _{\|x\|_{E_{i}} \leqslant 1}\left|\int_{I} x(s) a(s) d s\right| \\
& =\|b\|_{F_{i}}\|a\|_{E_{i}^{\prime}}, \quad i=0,1
\end{aligned}
$$

and $\|T\|_{E \rightarrow F}=\|b\|_{F}\|a\|_{E^{\prime}}$.
The interpolation property implies that there exists a positive constant C such that

$$
\begin{array}{r}
\|b\|_{F}\|a\|_{E^{\prime}} \leqslant C \max \left\{\|b\|_{F_{0}}\|a\|_{E_{0}^{\prime}}\|b\|_{F_{1}}\|a\|_{E_{1}^{\prime}}\right\}, \\
\forall b \in F_{0} \cap F_{1}, \forall a \in E_{0}^{\prime} \cap E_{1}^{\prime} .
\end{array}
$$

It can be proved that inequality $\left(3^{\prime}\right)$ is equivalent to $\left(2^{\prime}\right)$.

Now, we prove that condition (3') or the equivalent condition (2') gives more information than the well-known earlier (see [12, 13]) necessary condition for interpolation, i.e., condition (3') with $a=1_{(0, t)}$ and $b=1_{(0, s)}$.

Let E_{0}, E_{1}, and E be symmetric spaces on I with the fundamental functions φ_{0}, φ_{1}, and φ, respectively.

Theorem 4. Let $I=(0,1)$. Suppose that $L_{\infty} \subset E \subset E_{1}$ and that either E coincides with $E^{\prime \prime}$ or L_{∞} is dense in E_{1}. If $E \in \operatorname{Int}\left(L_{\infty}, E_{1}\right)$ then one of the three conditions holds:

$$
E=L_{\infty} \quad \text { or } \quad E=E_{1} \quad \text { or } \quad \liminf _{t \rightarrow 0^{+}} \frac{\varphi(t)}{\varphi_{1}(t)}=\infty
$$

Proof. Let $\varphi\left(0^{+}\right):=\lim _{t \rightarrow 0^{+}} \varphi(t)=0$; in the opposite case $E=L_{\infty}$. From (3') with $a=1_{(0, t)}$ we have

$$
\|b\|_{E} \leqslant C \max \left\{\varphi(t)\|b\|_{L_{\infty}}, \frac{\varphi(t)}{\varphi_{1}(t)}\|b\|_{E_{1}}\right\}
$$

for any $b \in L_{\infty}$ and all $t \in I$. If $\lim \inf _{t \rightarrow 0^{+}}\left(\varphi(t) / \varphi_{1}(t)\right)=C_{4}$ then from the above

$$
\begin{equation*}
\|b\|_{E} \leqslant C C_{4}\|b\|_{E_{1}}, \quad \forall b \in L_{\infty} \tag{8}
\end{equation*}
$$

First, let $E=E^{\prime \prime}$. If $x \in E_{1}$ then there exists a sequence $\left(x_{n}\right)$ of bounded functions such that $0 \leqslant x_{n} \nearrow|x|$. Since $\left\|x_{n}\right\|_{E} \leqslant C C_{4}\left\|x_{n}\right\|_{E_{1}} \leqslant C C_{4}\|x\|_{E_{1}}$ we have by the Fatou property of E that $x \in E$ and $\|x\|_{E}=\lim _{n \rightarrow \infty}$ $\left\|x_{n}\right\|_{E} \leqslant C C_{4} \lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{E_{1}}=C C_{4}\|x\|_{E_{1}}$. Hence $E=E_{1}$.

Second, if L_{∞} is dense in E_{1} then inequality (8) holds for any $b \in E_{1}$. Hence $E=E_{1}$.

Corollary 1. Let $I=(0,1)$. If $1 \leqslant q<p<\infty$ then $L_{\infty} \subset L_{p q} \subset L_{p}$ and $L_{p q} \notin \operatorname{Int}\left(L_{\infty}, L_{p}\right)$ (see [10, Ex.1]). More generally, if $1<p<\infty$ and $1 \leqslant q<r \leqslant \infty$ then $L_{\infty} \subset L_{p q} \subset L_{p r}$ and $L_{p q} \notin \operatorname{Int}\left(L_{\infty}, L_{p r}\right)$.

Finally, using (3^{\prime}) the following theorem can be proved in the same way as Theorem 4.

Theorem 5. Let E_{0}, E_{1}, and E be symmetric spaces on I such that $E_{0} \subset E \subset E_{1}, E \neq E_{1}$, and either E coincides with $E^{\prime \prime}$ or E_{0} is dense in E_{1}. If $\varphi(t)=\varphi_{1}(t)$ for $t \in I$ and $\lim \inf _{t \rightarrow 0^{+}}\left(\varphi(t) / \varphi_{0}(t)\right)=0$ then $E \notin \operatorname{Int} \bar{E}$.

Corollary 2. We consider the Lorentz spaces $L_{p q}, L_{p r}$, and $\mathcal{L}_{s t}$ on $I=(0,1)$. If $1 \leqslant q<r$ and $1 \leqslant p<s$ then $L_{s t} \subset L_{p q} \subset L_{p r}$ and $L_{p q} \notin \operatorname{Int}\left(L_{s t}, L_{p r}\right)$.

Remark 1. In Theorem 4 (and Theorem 5) assumptions that E coincides with $E^{\prime \prime}$ or L_{∞} is dense in E_{1} are important. Namely, if E_{1} is non-separable, different from L_{∞}, and takes for E the closure of L_{∞} in E_{1}, then $E \in \operatorname{Int}\left(L_{\infty}, E_{1}\right)$ and none of the three conditions in the assertion of Theorem 4 is satisfied.

5. Fundamental Function μ for Symmetric Spaces

Let E_{0}, E_{1}, and E be symmetric spaces on I with the fundamental functions φ_{0}, φ_{1}, and φ, respectively. Put $\varphi_{10}(t)=\varphi_{1}(t) / \varphi_{0}(t)$.

1. If $E \in \operatorname{Int} \bar{E}$ then taking $a=1_{(0, t)} \in E_{0} \cap E_{1}$ in the definition of μ_{E} and in (3^{\prime}) we obtain

$$
\begin{equation*}
\frac{\varphi(t)}{\varphi_{0}(t)} \leqslant \mu_{E}\left(\varphi_{10}(t), E_{0}, E_{1}\right) \leqslant C \frac{\varphi(t)}{\varphi_{0}(t)}, \quad \forall t \in I \tag{9}
\end{equation*}
$$

If, moreover, $I=\mathbb{R}_{+}, C=1$, and $\varphi_{10}\left(\mathbb{R}_{+}\right)=\mathbb{R}_{+}$then

$$
\begin{aligned}
\mu_{E}(t) & =\sup _{s>0} \mu_{E}(s) \min (1, t / s) \\
& =\sup _{s>0} \mu_{E}\left(\varphi_{10}(s)\right) \min \left(1, t / \varphi_{10}(s)\right) \\
& =\sup _{s>0} \frac{\varphi(s)}{\varphi_{0}(s)} \min \left(1, t / \varphi_{10}(s)\right) \\
& =\sup _{s>0} \varphi(s) \min \left(\frac{1}{\varphi_{0}(s)}, \frac{t}{\varphi_{1}(s)}\right),
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\mu_{E}\left(t, E_{0}, E_{1}\right)=\sup _{s>0} \varphi(s) \min \left(\frac{1}{\varphi_{0}(s)}, \frac{t}{\varphi_{1}(s)}\right) \tag{10}
\end{equation*}
$$

In a particular case, $\mu_{E}\left(t, L_{\infty}, L_{1}\right)=\varphi(t)$. Assumption $\varphi_{10}\left(\mathbb{R}_{+}\right)=\mathbb{R}_{+}$is essential in formula (10). Namely, if $\varphi_{0}=\varphi_{1}=\varphi$ then the right-hand side in equality (10) is equal to $\min (1, t)$ while the left-hand side can be equal to 1 as it was in Proposition 1 (a).

In particular, if $1 \leqslant p_{0}<p<p_{1} \leqslant \infty$ then from the M. Riesz interpolation theorem and the above

$$
\mu_{L_{p}}\left(t, L_{p_{0}}, L_{p_{1}}\right)=t^{\left(1 / p_{0}-1 / p\right) /\left(1 / p_{0}-1 / p_{1}\right)}
$$

2. Assumption $E \in \operatorname{Int} \bar{E}$ is essential in formula (10). Namely, if $I=(0, \infty)$ and $1<p<\infty$ then

$$
\begin{aligned}
& \mu_{A\left(L_{p}+L_{\infty}\right)}\left(t, L_{p \infty}, L_{\infty}\right) \\
& \approx\left\|\min \left(s^{-1 / p}, t\right)\right\|_{A\left(L_{p}+L_{\infty}\right)} \\
&=\int_{0}^{\infty} \min \left(s^{-1 / p}, t\right) d s \min \left(s^{1 / p}, 1\right)=\int_{0}^{1} \min \left(s^{-1 / p}, t\right) d s^{1 / p} \\
&= \begin{cases}t & \text { if } 0<t \leqslant 1, \\
1+\ln t & \text { if } t \geqslant 1 .\end{cases}
\end{aligned}
$$

However the right-hand side in equality (10) is equal to $\min (1, t)$.
3. For E_{0}, E_{1}, and E on $I=(0, \infty)$ such that $E_{0} \cap E_{1} \subset E$ let the following inequalities hold,

$$
\begin{equation*}
\left\|\frac{1_{(0, t)}}{\varphi_{1}}\right\|_{E} \leqslant C_{1} \frac{\varphi(t)}{\varphi_{1}(t)} \quad \text { and } \quad\left\|\frac{1_{(t, \infty)}}{\varphi_{0}}\right\|_{E} \leqslant C_{0} \frac{\varphi(t)}{\varphi_{0}(t)} \tag{11}
\end{equation*}
$$

for some $C_{0}, C_{1}>0$ and all $t>0$. Then

$$
\begin{equation*}
\frac{\varphi(t)}{\varphi_{0}(t)} \leqslant \mu_{E}\left(\varphi_{10}(t), E_{0}, E_{1}\right) \leqslant\left(C_{0}+C_{1}\right) \frac{\varphi(t)}{\varphi_{0}(t)} \tag{12}
\end{equation*}
$$

Namely, for any $a \in E_{0} \cap E_{1}$ such that $\|a\|_{E_{0}} \leqslant 1$ and $\|a\|_{E_{1}} \leqslant \varphi_{10}(t)$ we have $a^{*}(s) \leqslant 1 / \varphi_{0}(s)$ and $a^{*}(s) \leqslant \varphi_{10}(t) / \varphi_{1}(s)$ a.e., and so

$$
\begin{aligned}
\|a\|_{E} & =\left\|a^{*}\right\|_{E} \leqslant\left\|a^{*} 1_{(0, t)}\right\|_{E}+\left\|a^{* 1}(t, \infty)\right\|_{E} \\
& \leqslant \varphi_{10}(t)\left\|\frac{1_{(0, t)}}{\varphi_{1}}\right\|_{E}+\left\|\frac{1_{(t, \infty)}}{\varphi_{0}}\right\|_{E}
\end{aligned}
$$

[from assumption (11)]

$$
\leqslant C_{1} \varphi_{10}(t) \frac{\varphi(t)}{\varphi_{1}(t)}+C_{0} \frac{\varphi(t)}{\varphi_{0}(t)}=\left(C_{0}+C_{1}\right) \frac{\varphi(t)}{\varphi_{0}(t)}
$$

i.e.,

$$
\mu_{E}\left(\varphi_{10}(t)\right) \leqslant\left(C_{0}+C_{1}\right) \frac{\varphi(t)}{\varphi_{0}(t)}
$$

Assumptions of type (11) can be found in [11], where the K-functional for symmetric spaces is computed.

For example, if $t^{a} \varphi(t) / \varphi_{0}(t)$ is a decreasing function for some $a>0$ then

$$
\frac{\varphi(t)}{\varphi_{0}(t)}=\mu_{E}\left(1 / \varphi_{0}(t), E_{0}, L_{\infty}\right) \leqslant 2(2+1 / a) \frac{\varphi(t)}{\varphi_{0}(t)}
$$

It is sufficient to prove inequalities (11). The first inequality with $C_{1}=1$ is obvious; proof of the second inequality is the following (cf. [11]):

$$
\begin{aligned}
2^{-1}\left\|\frac{1_{(t, \infty)}}{\varphi_{0}}\right\|_{E} & \leqslant\left\|\frac{1_{(t, \infty)}}{\varphi_{0}}\right\|_{A(E)}=\int_{0}^{\infty}\left(\frac{1_{(t, \infty)}}{\varphi_{0}}\right)^{*}(s) d \varphi(s) \\
& =\int_{0}^{\infty} \frac{d \varphi(s)}{\varphi_{0}(s+t)} \leqslant \int_{0}^{t} \frac{d \varphi(s)}{\varphi_{0}(t)}+\int_{t}^{\infty} \frac{d \varphi(s)}{\varphi_{0}(s)} \\
& \leqslant \frac{\varphi(t)}{\varphi_{0}(t)}+\int_{t}^{\infty} \frac{\varphi(s)}{\varphi_{0}(s)} \frac{d s}{s} \leqslant \frac{\varphi(t)}{\varphi_{0}(t)}+\frac{\varphi(t) t^{a}}{\varphi_{0}(t)} \int_{t}^{\infty} \frac{d s}{s^{1+a}} \\
& =(1+1 / a) \frac{\varphi(t)}{\varphi_{0}(t)} .
\end{aligned}
$$

Inequalities $\left(12^{\prime}\right)$ can also be obtained from the formula $\mu_{E}\left(1 / \varphi_{0}(t)\right.$, $\left.E_{0}, L_{\infty}\right) \approx \sup _{\|a\|_{E_{0}} \leqslant 1}\left\|a^{*} 1_{(t, \infty)}\right\|_{E}$ which was proved in [3, Th. 7] in connection with the Nikolski type inequality.
4. If $I=(0,1)$ and $1<p<\infty, 1 \leqslant q<\infty$, then

$$
\begin{aligned}
\mu_{L_{p q}}\left(t, L_{p \infty}, L_{\infty}\right) & \approx\left\|\min \left(s^{-1 / p}, t\right)\right\|_{L_{p q}} \\
& \approx\left(\frac{q}{p} \int_{0}^{1}\left[s^{1 / p} \min \left(s^{-1 / p}, t\right)\right]^{q} \frac{d s}{s}\right)^{1 / q} \\
& = \begin{cases}t & \text { if } 0<t \leqslant 1, \\
(1+q \ln t)^{1 / q} & \text { if } t \geqslant 1 .\end{cases}
\end{aligned}
$$

It would be of interest to compute $\mu_{L_{p q}}\left(t, L_{p}, L_{\infty}\right)$.
Corollary 3. Let $I=(0,1)$. If $1<p<\infty$ and $1<q \leqslant \infty$ then $L_{p 1} \subset L_{p q} \subset L_{1}$ and $L_{p q} \notin \operatorname{Int}\left(L_{p 1}, L_{1}\right)$.

Proof. Suppose that $L_{p q} \in \operatorname{Int}\left(L_{p 1}, L_{1}\right)$. Then by (2') the function

$$
f(t)=\mu_{L_{p q}}\left(t, L_{p 1}, L_{1}\right) \mu_{L_{p^{\prime} q}}\left(t, L_{\infty}, L_{p^{\prime} \infty}\right) / t
$$

is bounded. However, if $0<t \leqslant 1$ then by (9) we have $1 \leqslant \mu_{L_{p q}}\left(t, L_{p 1}, L_{1}\right)$ $\leqslant C$ and by the above $\mu_{L_{p^{\prime} q}}\left(t, L_{\infty}, L_{p^{\prime} \infty}\right)=t \mu_{L_{p^{\prime} q}\left(t^{-1}, L_{p^{\prime} \infty}, L_{\infty}\right)} \approx$ $t\left(1+q^{\prime} \ln \frac{1}{t}\right)^{1 / q^{\prime}}$. Hence $\lim _{t \rightarrow 0^{+}} f(t)=\infty$, i.e., f is unbounded and we have a contradiction.

References

1. N. Aronszajn and E. Gagliardo, Interpolation spaces and interpolation methods, Ann. Mat. Pura Appl. (4) 68 (1965), 51-118.
2. J. Bergh and J. Löfström, "Interpolation spaces. An introduction," Springer-Verlag, Berlin/New York, 1976.
3. M. Z. Berkolaiko and V. I. Ovchinnikov, Inequalities for entire function of exponential type in symmetric spaces, Trudy Mat. Inst. Steklov 161 (1983), 3-17. [Russian]
4. A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190.
5. M. Cwikel, Monotonicity properties of interpolation spaces, Ark. Mat. 14 (1976), 213-236.
6. A. A. Dmitriev, On the interpolation of one-dimensional operators, Voronež. Gos. Univ. Trudy Nauc̆no-Issled. Inst. Math. VGU 11 (1973), 31-43. [Russian]
7. S. Janson, Minimal and maximal methods of interpolation, J. Funct. Anal. 44 (1981), 50-73.
8. S. Janson, P. Nilsson, and J. Peetre, Notes on Wolffs note on interpolation spaces, Proc. London Math. Soc. (3) 48 (1984), 283-299.
9. S. G. Krein, Ju. I, Petunin, and E. M. Semenov, Interpolation of linear operators, Providence, K. I, 1982 (Russian edition, Moscov, 1978).
10. L. Maligranda, Interpolation of Lipschitz operators for the pairs of spaces (L^{p}, L^{∞}) and (l^{p}, c_{0}), $0<p<\infty$, Functions et Approximatio 9 (1980), 107-115.
11. L. Maligranda, The K-functional for symmetric spaces, in "Interpolation Spaces and Allied Topics in Analysis (Proc. Conf. in Lund, Aug. 29-Sept. 1, 1983)," Lecture Notes in Math., Vol. 1070, pp. 169-182, 1984.
12. L. Mallgranda, Interpolation between sum and intersection of Banach spaces, J. Approx. Theory 47 (1986), 42-53.
13. E. I. Pustru'nik, On optimal interpolation and some interpolation properties of Orlicz spaces, Dokl. Akad. Nauk. SSSR 269 (1983), 292-295. [Russian].
14. J. Stafney, Analytic interpolation of certain multiplier spaces, Pacific J. Math. 32 (1970), 241-248.
15. H. Triebel, "Interpolation theory. Function spaces. Differential operators," Deut. Verlag Wissenschaften, Berlin, 1978.

[^0]: ${ }^{1}$ The symbol $f(t) \approx g(t)$ means that there exist positive constants c_{1}, c_{2} such that $c_{1} f(t) \leqslant g(t) \leqslant c_{2} f(t)$ for all $t>0$.

