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Some general examples of non-interpolation pairs and spaces are presented.
Necessary conditions for interpolation are established which determine the first type
of examples. Constructions connected with the relative completion and a property
of the K-functional provide the second class of examples. These techniques provide
new information about non-interpolation of symmetric spaces.  © 1989 Academic
Press, Inc.

1. INTRODUCTION

We recall some notation from interpolation theory (cf. [2, 97).

A pair A =(A,, A;) of Banach spaces is called a Banach couple if A, and
A, are both continuously imbedded in some Hausdorff topological vector
space V.

For a Banach couple A= (4,, 4,) we can form the intersection
A(A)=AynA; and the sum 3 (A)=Ay,+ A,. They are both Banach
spaces in the natural norms

Ha||A0r\A1=J(17 a; Ao, A1) and I|a||A0+A1=K(1’a;AO,A1)a
where, for 1 >0,

J(ta a):'](ts a; AOa Al):max(”a”/{o’ ! ”a”Al)a

and
K(t, a)=K(t, a; Ay, A1)=inf{”ao ”Ao+t fla, “A1:

a=dg+a, a0 g, a4, }.
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A Banach space 4 is called an intermediate space between A, and A, (or
with respect to 4) if 4, A, = A< Ay+ A, with continuous inclusions. For
brevity, the closure of 44 A4, in 4 will be denoted by A4°.

Let A= (A, A,) and B=(B,, B,) be two Banach couples. We denote by
L(A, B) the Banach space of all linear operators T: 4, + A4, = B, + B, such
that the restriction of T to the space 4, is a bounded operator from A, into
B,, i=0, 1, with the norm

|| T”L(Z, E)zma’x (” T”A()—»Bo’ ” T”Al—)Bl)'

We say that two intermediate spaces 4 and B are called interpolation
spaces with respect to A and B and we will write (4, B) € Int(4, B) if every
linear operator from L(A, B) maps 4 into B. It is a consequence of the
closed graph theorem that then the restriction of T to A4 is the bounded
operator from A4 into B and

ITe s <CUT ez 5 (1)

for some positive constant C independent of T'e L(A4, B). If 4 coincides
with B then A is called an interpolation space with respect to 4 and B and
we write 4 € Int(4, B); if, moreover, A,= B, and A, = B, then A is called
an interpolation space between A, and A, (or with respect to 4), and we
write 4 Int 4.

Let 2 denote the set of all functions ¢: (0, 00) — (0, o) such that ¢(s) <
max(1, s/t) ¢(¢) for all s, t>0. We then define the space A4, ., =
(4o, A1), « as the space of all ae 4+ A4, such that

Ki(t, a; 4o, 4,)
lally, o =sup ——-—
# >0 (p(t)

is finite; if @(r)=1(0<0< 1) we write, in short, 4, ., and ||aly .. We
note that A,, is the space of all aed,+4, such that lim, ,
K(t,a; Ay, A;) < o0; it can be proved that 4, , is a relative completion A,
of A, with respect to A, + A4;.

The plan of the paper is as follows:

In Section2 we discuss necessary conditions for interpolation using,
among other things, the fundamental function u.

In Section 3 first we study interpolation spaces 4 and B with respect to
A and B, where A4 is the sum 44+ 4,(Th. 1). In Theorem 2 we give a result
on non-interpolation of A4, and B,_; (i=0, 1) with respect to 4 and B
based on considerations in [127]. In Theorem 3 we investigate when A, or
A, is an interpolation space with respect to 4 =(A4,, 4;) and B=(4,, A,).
These results contain some results of Aronszajn and Gagliardo [1].

In Section 4, the above results are applied to an important class of
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symmetric spaces, in particular to Lorentz spaces. For example, Theorem 4
characterizes interpolation spaces between L, and E,.

Finally, in Section 5, we have collected various results giving u for
symmetric spaces.

2. FUNDAMENTAL FUNCTIONS AND NECESSARY
CONDITIONS FOR INTERPOLATION

For a Banach space 4 containing 4,n A, # {0} (or for a Banach space
A contained in 4, + A,) the fundamental function p,(v,) is given for >0
by

el
=p,t, Ay, A)= su T .4 41
1a(t)=palt, Ao, Ay) O#HEAlzmAIJ(t Y a; Ay, A7)

= sup lalle
lallgg<L lallg <t

tK(t7% a; Ag, A
<VA(Z)=VA(t:A0,A1)= sup 0 1)>

O0#aecA Ha“/{

We note that p,, v, e, u,(l) is the norm of imbedding 4, 4, into 4,
and v 4(1) is the norm of imbedding 4 into A,+ 4.

Let us investigate properties of these functions which we will need; other
properties of u, in the case of symmetric spaces will be counsidered in
Section 5.

PropoSITION 1. (a) Suppose that Ay A,. If A, is non-closed in A, then
ta(t)=1 for all t>0; if A, is closed in A; then p 4(t)~min(1, 1)".
(Y If Ayn A, is a non-closed subspace in both Ay and A, then
Bagn 4,(2) =max(1, 7).
(¢} If Agn A, is dense in both A, and A, and if A is intermediate
space between A, and A, then v ,(t, Ag, A ) =141, AF, AF).

Proof. Obviously min(1, 1) p (1) < p,(f) <1 for all £>0.

(a) If A, is non-closed in A, then there exists a sequence {a,} < 4,
such that {a,l =1 and {a,| 4, > 0. Hence

el
HAO(t)>nh—»n§o 7(7,—1’7195= L.

! The symbol f(f)~g(z) means that there exist positive constants ¢, c, such that
o f<Kg(t)<e, f(¢) for all 1>0.
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If Ag is closed in A4, then | a| 4, <C, |la| 4 for each ae 4, and so

lal . .
J—(t:“%)Smm(L tlall 4/l all 4,) <max(l, C;)min(l, ).
(b) Since ||al 4.4 <max(l,¢)J(r~', a) it follows that p, . 4 (2) <
max(1, ¢). From the assumptions there exist sequences {a’} < 4,N A4, such
that |} || 4,~4,=1and lim, , , [la}]l4,=0, i=0, 1. Hence

Pagr ay(2) =max(p (1), p4,())

1 (4]

. a i a
>max | lim I :.1||A01 I | "1”"“0
n—»ooJ([ ,an) n— J(t——,d

n

) =max(l, t).

(¢) If Agn A, is dense in both A, and A, then (4F, A¥) is a Banach
couple and if 4 is an intermediate space between A, and A4, then A*
contains A¥ N A¥. Moreover since K(t~*, a; Ay, A,) and J(z, a*; A¥, A¥)
are dual norms (cf. [2]), it follows that

VA(Z)‘—“SUP—E— ____l_a*ﬁ.)l___
ac A “a”A g*eAé‘nA; J(t, a*; A(,)ka Aik)

= sup ! sup |a™(a)|
a*e Al AT J(t~Y a* AF, AF) aea lal

*
oy el
a*EAa‘hAi"J(t 9a*’Aik9A6k)

= .uA*(t' Aiky A(;")

The following proposition is similar to Lemma 7.III in [1] and
Lemma 4 in [6] (for completeness sake we give a proof).
ProOPOSITION 2 (Necessary Conditions). Let (A, B) € Int(4, B).

(@) IfA & Afo+41then BoB,_,,i=0, 1.
(b) If Agn Ay is dense in both A, and A, then

“B(t9 BO’ Bl)ﬂA*(t:Aik9A(>)k)<Ct (2)

for all t=0.

Proof. (a)Letaed, a¢AM+%, and let f be a bounded linear
functional on A, + A, vanishing on Af°*4 and f(a)=1.
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For any be B,_,; the linear operator Tx=f(x)b belongs to L(4, B).
Hence b=Tae B and

1ole=1Tallp<I T4 plala<Clfla 1615, lall

This proves assertion (a).

(b) We consider the one-dimensional operator T:A4,+ A4, —
By By, Ta=a*(a)b, where a*c AF nAF=(A,+ 4,)* and be Byn B,.
We have

1Tl e~ 2 =1bl5 suP |a*(a)l=|bllslia*| s  i=0,1,
lalla; <1 )

and

[Tl aez=1215lla* ] 4.

The interpolation property implies that there exists a constant C >0 such
that

1615 la* | s« < Cmax {|| b5, la* i, 1215 a* I i},
Vbe Byn B, Va*te A n A}, (3}

Since
max {[|b {5, [ a* [ azs 1b1ls, a* ¢} StI( 7, by By, B) J(17', a*; AF, AF)

it follows from (3) by taking the supremum over all be By~ B, and all
a*e AF n A¥ that inequality (2) holds.

3. RESULTS FOR BANACH SPACES

From the definition we have (4,+ 4,, By+ B,)e Int(4,, B). We will be
interested in taking a smaller space B in the place of the sum B+ B,. In
certain cases the next theorem determines how large B must be whenever
(Ao+ A,, B) belongs to Int(A4, B). The closure of Byn B, in B, will be
denoted by B?, i=0, 1.

THEOREM 1. Suppose that Ay # A, and (A, + A,, B)eInt{4, B).
(a8) If Ay~ A, is not dense in both Ay and A, then B= By+ B,.
{(b) If Agn A, is dense in A, and not dense in A, then B> B+ B,.
(¢) If Agn A, is dense in both Ay and A, then B> BS+ BY.



338 MALIGRANDA AND MASTYLO

Proof. (a) We note that if 4,1 A, is not dense in A, _,, or equivalently
that A4, is not dense in Ay+ A4, then A,+ A, & Afo*4 and by
by Proposition2(a) we have B> B,_; (i=0,1). This means that
B=B,+ B,.

(b) From the above we have B> B,. Moreover, since
(Ag+ A, BnBy)elnt((4,, Ao+ A,), (Byn By, By)) it is sufficient to
prove

ifAd,c A, Ag# A,, Agis dense in A,, B,< B, and

i 4
(4,, B)eInt(4, B) then B> BY )

Before the proof of (4) we note that if A, is a proper and dense subspace of
A, then A¥ < AF and AF¥ is non-closed in AF.

On the contrary, if AF is closed in 4§ then it is closed in the topology
o(A¥, Ay). Since A¥ is dense in AF in the topology a(AF, A,) we have
A¥ = A} and density of 4, in A, implies 4,=A4,.

Now, we prove (4).

Applying Proposition 1(a), the fact that A is non-closed in AF, and
Proposition 2(b) we have

1s(t, Bo, By)=ug(t, Bo, By) (1, AF, AF)< Ct
for all £>0. Hence
bl 5< Cmax(t||b| g, 16]l5)
for each be B, and all 1> 0. Taking r — 0+ we get
I6la<Clblls,  VbeB.

Density of B, in B? implies that the above inequality holds for each b e BS.
Hence Bo BY.

(c) By the same arguments as in the proof of (b) we have that B > B
and B> BY, and so B B)+ BS.

From the above theorem it is easy to construct examples of non-
interpolation spaces by first summing 4,+ 4, and then making B less than
B} + BY.

In the proof of next theorem which gives non-interpolation spaces we
need the following lemmas.

LemMMA 1. Suppose that

there exists a sequence {b,} < By B, such that ||b,|lg 5 =1,
5,15, =0 and ||b,] 3= C, for some C,>0. (5)
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If A & A, then there exists a sequence {T,} of operators such that

[(Raadice]

sup [Tl pa <l and  limsup [T, |, 5= co. (6)

Proof (cf. [12]). Let t;'=|b,|s. Consider the linear operators
T,x=b,f,x), where f, are bounded liner functionals on 4,+ 4, with

|fn(x)|<K(tn’x; AO:AI) and fn(a):K(lnﬁa; AO’AI)

and ae 4, ||lall, <1, a¢ A,. The existence of such functionals follows from
the Hahn-Banach theorem.
If xe 4,, then by (5)

” ]”nx”B,= ” bn ”B, ]fn(x)i < ” bn HB,K(tna X, AOs Al)
<Ibulls I xla=1lxl,,  i=0,1L
and

lim sup || T,allz
= 1i§1 sup 116,015 fula)l
= lim sup ||b, |5 K(¢,, a; Ay, A;)

> C, lim sup K(¢,, a; Ay, A;)

-0

=C, lim K(t,a; 4y, A,) = 0,

{— 0

and the proof is complete,

Lemma 2. IfA,c A4, , and lim,_, , ¢(t)/t=0 then 4, A4,.
Proof.  First method. From assumptions there exists C, >0 such that
K(t,a; 4o, 4)) < C30()|all,,,  Vaed,,Vi>0, (7)

and there exists ¢, >0 such that ¢(¢)/z, < 1/(4C;). By the definition of the
K-functional we can write (for ¢, fixed) a=a, + b, with

falleg+to bl
<2K(ty, a; Ay, A;) [from assumption (7)]

1
<2Cs0(t0)lall g < el
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ie.,
t
“aIHAQSé)”a“Al and byl <27 ],
Then similarly &, = a, + b, where

Lo Lo
”a2||A0<§”b1||41<Z”a”Al and

16204, <27 110y 11y <272 @l 4y
Proceeding by induction we get a= (a; +a,+ ---+a,) + b, where
la.llse<2 "o llally, and 6,4, <27"[all4-

Since b,—»0in 4, and Y a,e 4, we get ac Ay and so 4, < A4,.
Second method (if additionally 4, ,, =A,+ A,). First, we note that if
ae AY+ A? then K(1, a; A, AY)=K(t, a; Ay, A,) and so

(Ag’ A(l))w,oo = (AO’ Al)(p,oo N (Ag + A(I))

Hence, if A, ., = Ao+ A,, then (43, A9),, ., = A} + A} and we may assume
that 4,n A4, is dense in both Ay and 4,. From the fact (4,+4,)*=
AF n A} and from Proposition 1(c) (under the above density assumption)
we have

o(1) _ _
—_—z Vzw,w(t L Ag, A1) > VA0+A1(t Y Ao, A1)

=I’l(A0+A1)*(t—la Aik: A(;k):uAgr\Al*(tvla A;k, A(’)k)

There are three mutually exclusive possibilities for A, and A,: (i) 4, < 4o,
(i) Adg= A, and Aqg# A, (ili) AgnA;#Agand Agn A #A,.
Assumption lim,_, ., ¢(#)/t=0 and Proposition 1(a), 1(b) give that the
second and third cases are impossible. Hence 4, = 4,.
From the equality 4, = A, and Lemma 2 immediately follows the
Aronszajn—Gagliardo result (see [1]; see also [9, 12, 14]):if Ag=A,+ 4,
then Ag=A,+ 4,,ie., A, A,.

THEOREM 2. If A;#Aq+ A, and By B, is a non-closed subspace of
B, ,then (A,_,, B,)¢Int(4, B) (i=0 or 1).

Proof for i=0. From the assumption there exists a sequence
{b,} = By B, such that ||b,] 5,5 =1 and [[b,]l5 — 0. It follows that

16allgonm =1, 1162l >0,  [b,ll5=1
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Since Ay # A, + A, we have by Lemma 2 that 4, ¢ A4,. Applying Lemma 1
to couples 4, B and spaces A=A, B= B, we have a sequence {7,} of
operators such that

sup | 7., AR S 1 and limsup || T, I 4, By = 0.

H— oC

Hence (4., B,) ¢ Int(4, B).

Aronszajn and Gagliardo in [1] investigated when 4, or 4, belongs
to the set Int(Ao+ 4., 4,0 A4,), i.e, when 4, or A, is an interpolation
space between sum A,+ A; and intersection 4,n A4, (see also [12]).
Now, we consider the problem when A, or 4, belongs to a bigger set
Int((Ao, 41)s (44, 4¢))-

THEOREM 3. Let A=(Ay, A,), B=(A,,4,) and suppose that
Aot Ao Ay, A £ Agn A,
(@) If Ay~ A, is a non-closed subspace in A,, then A, ;¢ Int(4, B)
(i=0or1)
(b) If Agn A, is closed in Ay but not in A,, then A, € Int(4, B) if and
only if Agn A, is dense in A,.
() If Ay A, is closed in both Ay and A,, then A,, A, ¢Int(A4, B).

Proof. (a) This is a particular case of Theorem 2.
(b) If Aqn A4, is dense in A4, then we have

(Ao+A4,)°=AJ+ A)=(4on A,) + A= 4,.

Hence, if Te L(A4, B) then T is bounded from (4,+ 4,)°= A, into itself.
On the other hand, if 4, € Int(4, B) then 4, = Afe+4 (if 4, ¢ Ade+ then
by Proposition 2(a) we get A; > 4,). Hence

A c At ndforAi=(4y+A4,)° = A3+ A= 49,

ie, 4, =A9.

{c) Let Aqn A, be closed in both A,, 4, and let 4 eInt(A4, B). Since
Afot4i=4, (i=0,1) we have four mutually exclusive possibilities for
A:(i)AcA, and AcA,, (ii)AcAd, and 4 & 4,, (ii)4 & A, and
Ac A, (iv)A & Agand 4 & A,.

The first case gives A = A, N A,. Proposition 2(a) implies that the second
and third cases are impossible, and the fourth case has the form 4> 4,
and Ao4,, ie, A=A4,+A4,. Hence, only A4, A, and A,+ A, are
interpolation spaces with respect to (4,, A;) and (4, 4,).
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4. RESULTS FOR SYMMETRIC SPACES

The necessary condition in Proposition 2(b) required the assumption of
density of the intersection in each of the spaces. In the case of symmetric
spaces (or even Banach lattices of measurable functions) it is possible to
obtain a necessary condition for interpolation by taking associated spaces
in the place of conjugate spaces.

A Banach space E of equivalence classes of measurable functions on
I=(0,]), 0<l< o0, is said to be a symmetric space (on I) if ye E and
measurable x are such that x*(¢) < y*(¢) for tel, then xe E and ||x||E <
| 1 & (cf. [9]). Here x* denotes the non-increasing rearrangement of | x|.

The associate space E’ of a symmetric space E is the collection of all
measurable functions x for which

Ixlz= sup | Ix(e) p(0)] de < co.
Iyles1 ™

The fundamental function ¢ = @ of a symmetric space E on [ is defined
for telas @g(t)=1¢,,ll £ Where 1, is the characteristic function of the
interval (0, ¢).

First we describe a necessary condition for the interpolation of
symmetric spaces. Namely, if (E, F)elInt(E, F) where E=(E,, E,) and
F=(F,, F,), then

luF(t’ Fanl)ME’(taEiaEf))gCts V> 0. (2,)

For the proof we consider the one-dimensional operator T: Ey+ E, —
Fyn F, defined by

Tx(t)=b(t)£x(s)a(s)ds, beFynF,,acEy,nE].

Then
[ Tl g r=blF sup

Ixlg<t

=lbllglalg =01,

j x(s) a(s) ds

1

and | Tl p=1blrllalle-
The interpolation property implies that there exists a positive constant C
such that

161 Flallz < Cmax{[|bllgllalzblr lalg}

Vbe Fyn Fy,YacEynE}. (3)

It can be proved that inequality (3’) is equivalent to (27).
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Now, we prove that condition (3’) or the equivalent condition (2') gives
more information than the well-known earlier (see [12, 13]) necessary
condition for interpolation, i.e., condition (3') with a=1, ,, and b=1 .

Let Ey, E;, and E be symmetric spaces on / with the fundamental
functions ¢4, @, and @, respectively.

THEOREM 4. Let I=(0, 1). Suppose that L, < Ec E, and that either E
coincides with E" or L, is dense in E,. If EeInt(L ., E,) then one of the
three conditions holds:

14
E=L_ or E=E, or Iim inf ol1)
=0t @y(1)

Proof. Let @(0%):=1lim,_ 4+ @(t)=0; in the opposite case E=1_.
From (3') with a= 1, ,we have

Ib1e< Cmaxfo(lbl. 20 1615}

for any be L and all ze I If liminf, o+ (¢(2)/@,(¢))= C, then from the
above

Iole<CCyllblls,  VbeL,,. (8)

First, let E=E". If xe E, then there exists a sequence (x,} of bounded
functions such that 0<x, 7 |x|. Since | x,[| < CCy i x, |5, < CCyl x| g,
we have by the Fatou property of E that xeF and ||x|z=lim, .
X, e<CCylim,, , o | x, )l g, = CCy4 || x| g, Hence E=E|.

Second, if L, is dense in E, then inequality (8} holds for any be E,.
Hence E=E,.

CoroLLARY 1. Let I=(0,1). If 1<g<p<oo then L,cL, L, and
L,,¢Int(L,,L,) (see [10, Ex.1]). More generally, if 1<p<oco and
I<g<r<oo then L,cL,, =L, and L,,¢Int(L,,L,)

Finally, using (3') the following theorem can be proved in the same way
as Theorem 4.

THEOREM 5. Let Ey, E,, and E be symmetric spaces on I such that
EycEcE,, E+E,, and either E coincides with E" or Eg is dense in E,. If
()= @(2) for tel and liminf, , o+ (@(¢)/@o(t)) =0 then E ¢Int E.

COROLLARY 2. We consider the Lorentz spaces L,,, L,, and L,

on I=(0,1) If 1<g<r and 1<p<s then L,cL, <L, and
qu ¢ Int(Lsn Lpr)'

640/56/3-3
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Remark 1. In Theorem4 (and Theorem 5) assumptions that E
coincides with E” or L_ is dense in E,; are important. Namely, if E, is
non-separable, different from L, and takes for E the closure of L in E,,
then EeInt(L_, E,) and none of the three conditions in the assertion of
Theorem 4 is satisfied.

5. FUNDAMENTAL FUNCTION p FOR SYMMETRIC SPACES

Let Ey, E,, and F be symmetric spaces on / with the fundamental
functions ¢, ¢,, and ¢, respectively. Put ¢,4(2) = @,(1)/0(?).

1. If Eelnt E then taking a=1, ,€ Eon E; in the definition of u, and
in (3’) we obtain

o(1) o(1)
m<ﬂ5((l’1o(l‘)’ Eo,E1)<CMa Viel %)

If, moreover, I=R,, C=1, and ¢o(R,)=R, then

pe(t) = sup pg(s) min(1, t/s)

s>0

= sup fx(@10(s)) min(1, t/@,0(s))

s>0

26) nin(l, rols))
B

=sup
>0 ?o

_ sup p(s) min <__1_ _1_)
SRl Po(s)” @4(s)/)’

ie.,

) 1 t
uslt, Eo, E;) =sup o(s) min (-ﬂs—) m) (10)

s>0

In a particular case, ug(t, L, L{)=¢(¢). Assumption ¢, (R,)=R, is
essential in formula (10). Namely, if ¢, = ¢, = ¢ then the right-hand side in
equality (10) is equal to min(1, #) while the left-hand side can be equal to 1
as it was in Proposition 1(a).

In particular, if 1 < py<p <p, < oo then from the M. Riesz interpolation
theorem and the above

#L,,(t, Lpo’ Lm) = ¢W/po—1/p)/(1/po—1/p1) (10')
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2. Assumption EeIntE is essential in formula (10). Namely, if
I=(0, 0) and 1 <p< oo then

Bty + Loyl Lo L,)

~ [lmin(s ', Ol sz, + 2.y

e 1
=7 min(s~ ", 1) ds min(s'/?, 1) = j min(s =7, 1) ds'”
JO Q0

_fr if 0<r<g],
"Wl +Ine  if =1

However the right-hand side in equality (10) is equal to min(1, ).
3. For Ey, E;, and E on I=(0, ) such that E,nE, cE let the
following inequalities hold,

Lio.s) o(1) i L o0y o(1)
— < LA and — £C i1
Py g 1(Px(z) Ps £ 0‘P0(t) (1)
for some Cy, C; >0 and all +>0. Then
t t
2O i prot), oy E < (Cot ) 2 (12)
@o(?) @o(t)

Namely, for any ae E;n E; such that [ja] g <1 and |lallz < @0(t) we
have a*(s) < 1/@y(s) and a*(s) < @ o(t)/@,(s) a.e., and so

lale=la*le<lla*lonle+la*!(t, )l e

< @o(t) oo L)
Py e Do e
[from assumption (11)]
o(1) o(t) o(f)
\C1 1 T Co———"= C Cl .
<Gl oyt Cotu = QI
Le.,
uE(wm(t))S(CmCl)-"f-(—’—)-.
®olt)

Assumptions of type (11) can be found in [11], where the K-functicnal for
symmetric spaces is computed.
For example, if t*¢(¢)/po(2) is a decreasing function for some a >0 then
(1)

o(t) ,
— < A Ay i
~D pe(1/@o(t), Eo, L) <22+ 1/a) ool) (12)
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It is sufficient to prove inequalities (11). The first inequality with C; =1 is
obvious; proof of the second inequality is the following (cf. [11]):
1(r,OO)

=7 (*e2) @ dots)

Po 0 Po
_ [~ _dels) _ J’dw(S) = do(s)

o @ols+1) Jo @o(t) i @ols)
Lo Jw @(s) ds _ o(1) () t"j“’ ds
Too(t) Y @ols) s T @o(t) T @olt) Ji st
(1)
Po(t)

1

(1, 0)

Do

271

< r

E A(E)

=(1+1/a)

Inequalities (12') can also be obtained from the formula ug(1/04(1),
E,, Lc,c,)zsup,,,,”EOsl a*1 w)l g which was proved in [3, Th.7] in
connection with the Nikolski type inequality.

4 IfI=(0,1)and 1 <p< oo, 1 <g< oo, then

.uLM(t’ Lpoo ’ Loo) ~ ” min(s_ l/p, t)” Lpg

1 d 1/q
~ (g J [s"7min(s "2, t)]q—s-)

0 S
_{t if 0<r<1,

(L+glno)s  if r>1.

It would be of interest to compute u Lt Lys L)

COROLLARY 3. Let I=(0,1). If l<p<ow and 1<qg< oo then
L,cL,,cL,and L, ¢Int(L,, L,)

Proof. Suppose that L, €Int(L,;, L;). Then by (2’) the function

f(t) = :uqu(t: Lpl ’ Ll) .uLplq'(tb Loo > Lp’oo )/t

is bounded. However, if 0<r<1 then by (9) we have 1<u, (1, Ly, L)
<C and by the above p; (t, Lo, Ly)=1tur, (17} Lyo, L) ®
H1+4 ¢ In L)% Hence lim,_ 4+ f(t) = 0, i.., fis unbounded and we have a
contradiction.
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